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Abstract
Alloy beams and beam like elements are principal constituents of many structures and
widely used in high speed machinery, aircraft and light weight structures. Crack is a
damage that often occurs on members of structures and may cause serious failures of
structures. In this research the natural frequency of a cracked cantilever beam is
investigated by finite element method by using of ANSYS program with different crack
depth and location effect.
The beam material studied is aluminum alloy, titanium alloy, copper alloy and magnesium
alloy. A comparison is made between these alloys and conclude optimized result between
them. The increase of the beam length result in a decrease in the natural frequencies of
the composite beam and also shows that an increase of the depth of cracks lead to a
decrease in the value of natural frequencies.

__________________________________________________________________________________

1. Introduction

All structures are subjected to degenerative effects that may
cause initiation of structural defects such as cracks which,
as time progresses, lead to the catastrophic failure or
breakdown of the structure. Thus, the importance of
inspection in the quality assurance of manufactured
products is well understood. Cracks or other defects in a
structural element influence its dynamical behavior and
change its stiffness and damping properties. Consequently,
the natural frequencies of the structure contain information
about the location and dimensions of the damage [1].
The dynamic response-based damage detection method
attracts most attention due to its simplicity for
implementation. This technique makes use of the dynamic
response of structures which offers unique information on
the defects contained with these structures. Changes in the
physical properties of the structures due to damage can
alter the dynamic response, such as the natural frequency
and mode shape. These parameter changes can be extracted
to predict damage detection information, such as the
presence, location, and severity of damage in a structure.

The natural frequency provides the simplest damage
detection method since damage tends to reduce the stiffness
of the structure. Therefore, a reduction of natural frequency
may indicate the existence of damage in the structure.
However, the natural frequency is a global feature of the
structure, from which the location of the damage is difficult
to determine. The modal parameters (e.g., the mode shape
and flexibility), which can capture the local perturbation
due to damage are used in order to locate damage [2].
A crack may reduce the flexural rigidity of a column and
its load carrying capacity .From the reduced flexural
rigidity, the deflection and the load carrying capacity of a
notched column may be calculated .The bending at the
crack section of a column causes a tensile mode crack up
stress field, which is characterized by a stress intensity
factor. When the stress intensity factor at a crack tip
exceeds the fracture toughness of the material, fracture
occurs. The fracture toughness of cracked column is
studied [3].
In many circumstances material flaws are present in
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structures made of anisotropic composites .Such cracks can
be detected by vibrational analysis based on the variation
of the local compliance as the crack gradually grows. The
significance of this term on the local flexibility of a
centrally cracked plate is discussed by presenting a
numerical example for a graphite fiber for a reinforced
polyamide composite. The prospect of crack diagnosis of
composite components on the basis of coupled deformation
modes due to the crack presence is signified by analyzing
the compliance matrix of a prismatic beam containing a
central crack [4].
A crack in a structural element introduces a significant
local flexibility which enhances the instability. Buckling of
a edge notched beam is studied for isotropic and
anisotropic composites. The local compliance due to
presence of cracks in anisotropic medium is formulated as
a function of crack -tip stress intensity factors and the
elastic constants of the material [5].
The equation of motion & associated boundary conditions
are derived for a uniform Bernoulli-Euller beam containing
one single- edge crack. The main idea is to use a
generalized vibrational principle that allows for modified
stress, strain, & displacement field that enable one to
satisfy the compatibility requirements in the vicinity of the
crack [6].
It was investigated a new beam finite element with a single
non-propagating one-edge open crack located in its mid-
length is formulated for the static & dynamic analysis of
cracked composite beam -like structures. The element
include two degree of freedom at each of the three nodes, a
transverse deflection and an independent rotation
respectively [7].
The Eigen frequencies of a cantilever beam, made from
graphite fiber reinforced polyamide with a transverse one
edge non-propagating open crack are investigated .Two
models of beam are presented.in the first model the crack
is modelled by a massless substitute spring .The flexibility
of the spring is calculated on the basis of fracture
mechanics and the castigiliano theorem. The second model
is based on the finite element method (FEM) [8].
It was investigated that the presence of a crack in a
structural member introduces a local flexibility that effects
its vibration response .Moreover the crack will open and
close in time depending on the rotation and vibration
amplitude .In this case the system is non-linear [9].
The characteristic matrices of a composite beam with
single transverse fatigue crack are presented. The element
developed has been applied in analyzing influence of the
cracked parameters (position and relative depth)and the
material parameters relative volume and fiber angle)on
changes in the first four transverse natural frequencies of
the composite beam made to unidirectional composite
material [10].
The dynamics of a fixed-three bar with a breathing crack in
longitudinal vibration is investigated .The crack was
modelled as a continuous flexibility using the displacement
field in the vicinity of the crack found with fracture
mechanics methods[11].

It was investigated that a piece-wise linear approach to
analyze vibrations of a cantilever beam with a 'breathing
crack’. Their formulation was hybrid frequency-
domain/time-domain method. For the majority of
vibration, the crack section is unambiguously either open
or closed [12]. The numerical modelling of damage and
crack propagation in concrete and concrete structures has
evolved considerably in the past years. In this contribution
,a higher  order continuum model is used to model the
failure behavior of single -edge notched & double- edge
notched concrete beams loaded in four-point shear .The
influence of the ratio of the compressive strength & the
tensile strength is scrutinized and its relation with the
failure mechanism is investigated [13] .
It was analyzed that the dynamic behavior of  cracked
beam, the effect of crack on a structure by comparing the
signal in frequency & the time domain: and concluded that
,increase in crack depth results the increase in amplitude of
vibration .Secondly the amplitude of low frequency
vibration decreases and high frequency vibration increases
when the location of crack increases [14].
The modelling methods of structural elements with failures
(cracks and delamination) is presented. Cracks appear in
both isotropic and anisotropic materials .Delamination is
one of the most important failure modes of laminated
composite materials. Delamination may originate during
manufacturing or may be induced during in -service
loading ,such as by foreign object impact or by fatigue
common damage in composite materials is matrix-
cracking, fiber-breakage ,fiber-matrix debounding [15].
different approaches to crack modelling , and demonstrates
that for structural health monitoring using low frequency
vibration based on beam elements are adequate .They also
addresses the effect of the excitation of  breathing cracks,
where the beam stiffness is bilinear ,depending upon the
whether the beam is open or close [16].
The bending free vibration of cantilevered composite
beams weakened by multiple non-propagating part through
surface crack is presented .Toward determining the local
flexibility characteristics induced by the individual cracks,
the concept of massless rotation is applied [17].

2. Governing Equation

2.1 Structure Analysis

The differential equation of the bending of a beam with a
mid-plane symmetry (Bij = 0) so that there is no bending-
stretching coupling and no transverse shear deformation
(εxz=0) is given by

IS11( 4 / 4) =q(x) (1)

It can easily be shown that under these conditions if the
beam involves only a one layer, isotropic material, then
IS11=EI=Ebh3/12 and for a beam of rectangular cross-
section Poisson’s ratio effects are ignored in beam theory,
which is in the line with Vinson & Sierakowski (1991).
In Equation 1, it is seen that the imposed static load is
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written as a force per unit length. For dynamic loading, if
Alembert’s Principle are used then one can add a term to
Equation.1 equal to the product mass and acceleration per
unit length. In that case Equation.1 becomes

IS11d4 ( , )/ 4=q(x,t)- 2 ( , )/ 2 (2)

where ω and q both become functions of time as well as
space, and derivatives therefore become partial derivatives,
ρ is the mass density of the beam material, and here F is
the beam cross- sectional area. In the above, q(x, t) is now
the spatially varying time-dependent forcing function
causing the dynamic response, and could be anything from
a harmonic oscillation to an intense one-time impact.
For a composite beam in which different lamina have
differing mass densities, then in the above equations use,
for a beam of rectangular cross-section= ℎ = ∑ (ℎk-hk-1) (3)

However, natural frequencies for the beam occur as
functions of the material properties and the geometry and
hence are not affected by the forcing functions; therefore,
for this study let q(x,t) be zero.
Thus, the natural vibration equation of a mid-plane
symmetrical composite beam is given by

IS11[d4 ( , )/ 4]+ [ 2 ( , )/ 2]=0 (4)

It is handy to know the natural frequencies of beams for
various practical boundary conditions
In order to insure that no recurring forcing functions are
close to any of the natural frequencies, because that would
result almost certainly in a structural failure. In each case
below, the natural frequency in radians /unit time is given
as

n= 2 ( 11/ 4) (5)

Where α2 is the co-efficient, which value is catalogued by
Warburton, Young and Felgar and once ωn is known then
the natural frequency in cycles per second (Hertz) is given
by fn= ωn /2π, which is in the line with Vinson &
Sierakowski (1991).
In general, governing equation for free vibration of the
beam can be expressed as

[K]- 2[M]{q}=0 (6)

Where, K = Stiffness matrix
M = Mass matrix   , and
q = degrees of freedom.

2.2 Modal Analysis (Mehdi. H et al [24])
2.2.1 Damping Matrices

Damping may be introduced into a transient, harmonic, or
damped modal analysis as well as a response spectrum. The
type of damping allowed depends on the analysis as

described in the subsequent sections.
Transient (Full or Reduced) Analysis and Damped Modal
Analysis:
The damping matrix, [C], may be used in transient and
damped modal analyses as well as substructure generation.
In its most general form, the damping matrix is composed
of the following components.

E
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(7)
Where
[C] = structure damping matrix, α = mass matrix multiplier,
[M] = structure mass matrix, β = stiffness matrix multiplier,
[K] = structure stiffness matrix, Nma = number of
materials, αim = mass matrix multiplier for material I, [Mi]
= portion of structure mass matrix based on material I, Nmb

= number of materials,
m

j
= stiffness matrix multiplier

for material j, [Kj] = portion of structure stiffness matrix
based on material j, Ne = number of elements with
specified damping, , [Ck] = element damping matrix, Ng =
number of elements with Coriolis or gyroscopic damping,
[Gl] = element Coriolis or gyroscopic damping matrix
Harmonic (Full or Reduced) Analysis:
The damping matrix ([C]) used in harmonic analyses is
composed of the following components.
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(8)
The input exciting frequency, Ω, is defined in the range
between ΩB and ΩE via
ΩB = 2πfB,

ΩE = 2πfE

fB = beginning frequency
fE = end frequency
Substituting equation (8) into the harmonic response
equation of motion and rearranging terms yields

 E
j j j m i

2
k 1 2 1

[[K] 2 [K] (2 g g )[K ] [C ] [ [M] [M ] [K]

[K ] [C ] [G ]]](u ) F [M]

m
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m
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i g i

iu

  



        

     

  
  

(9)
The complex stiffness matrix in the first row of the
equation consists of the normal stiffness matrix augmented
by the structural damping terms given by g, gi, gi

E, and [Cm]
which produce an imaginary contribution. Structural
damping is independent of the forcing frequency, Ω, and
produces a damping force proportional to displacement (or
strain). The terms g, gi, and gi

E are damping ratios (i.e., the
ratio between actual damping and critical damping, not to
be confused with modal damping).
The second row consists of the usual viscous damping
terms and is linearly dependent on the forcing frequency,
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Ω, and produces forces proportional to velocity.

2.2.2 Mode-Superposition Analysis

The damping matrix is not explicitly computed, but rather
the damping is defined directly in terms of a damping ratio
ξd. The damping ratio is the ratio between actual damping

and critical damping. The damping ratio
d

i
for mode i is

the combination of

2 2
d m

i i i
i

 
   


   

(10)
Where

ξ = constant modal damping ratio, m
i = modal damping

ratio for mode shape i (see below), ωi = circular natural
frequency associated with mode shape i = 2πfi, fi = natural
frequency associated with mode shape I, α = mass matrix
multiplier

The modal damping ratio
m

i can be defined for each

mode directly (undamped modal analyses only).
Alternatively, for the case where multiple materials are
present whose damping ratios are different, an effective

mode-dependent damping ratio
m

i can be defined in the

modal analysis if material-dependent damping is defined
and the element results are calculated. This effective
damping ratio is computed from the ratio of the strain
energy in each material in each mode using
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(11)

Where

Nm = number of materials, m
j = damping ratio for

material j

T
j

1
( ) [K ]( )

2
s

j iE  

Strain Energy contained in mode i for material j, {φi} =
displacement vector for mode I, [Kj] = stiffness matrix of
part of structure of material j
These mode-dependent (and material-dependent)
ratios , will be carried over into the subsequent mode-
superposition or spectrum analysis. Note that any
manually-defined damping ratios will overwrite those
computed in the modal analysis via equation-11

3. Results and Discussions

In order to check the natural frequency of cantilever alloy
beam, first we calculate the mechanical properties of Al-
alloy, Mg-alloy, Ti-alloy and Cu-alloy, like ultimate tensile
strength, yielding strength.
In these alloys titanium alloy has a greater ultimate strength
than the other alloys, whereas magnesium alloy has a lower
ultimate strength.
These mechanical properties are fed into ANSYS-14.0 to
calculate the natural frequency for alloy cantilever beam.

Table 1: Properties of Selected Materials

(a)

(b)
Figure 1: comparison of Mechanical properties (a) Tensile yield

strength, (b) Ultimate tensile strength
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Table 2: Comparison of Natural Frequency with and without
crack at 50 mm crack location

Table 3: Comparison of Natural Frequency with and without
crack at 100 mm crack location

100mm crack location

Alloy Natural Frequency (Hz)

Mode

Shape

without

crack

2mm crack

depth

4mm crack

depth

1 23.656 23.466 22.729

2 93.849 93.573 92.317

Cu Alloy 3 147.97 146.63 138.87

4 413.25 409.23 390.112

5 503.77 504.62 498.01

6 571.19 569.27 556.93

1 32.503 32.243 31.233

2 128.91 128.54 126.81

Mg Alloy 3 203.3 201.48 190.86

4 567.79 562.3 536.16

5 689.43 690.6 681.57

6 784.5 781.87 764.36

1 29.644 29.408 28.491

2 117.55 117.2 115.63

Ti Alloy 3 185.41 183.76 174.12

4 517.85 512.88 489.4

5 626.32 627.39 619.19

6 715.21 712.82 696.86

1 32.887 32.621 31.592

2 130.7 130.11 128.37

Al Alloy 3 205.7 203.84 193.01

4 574.49 568.88 542.2

5 703.12 704.31 695.07

6 794.37 790.169 773.97

50mm crack location

Alloy Natural Frequency (Hz)

Mode

Shape

without

crack

2mm crack

depth

4mm crack

depth

1 23.656 23.176 21.59

2 93.849 93.136 90.233

Cu Alloy 3 147.97 144.84 134.86

4 413.25 404.53 376.32

5 503.77 500.35 487.58

6 571.19 566.72 549.03

1 32.503 31.846 29.675

2 128.91 127.94 123.95

Mg Alloy 3 203.3 199.02 185.37

4 567.79 555.87 517.26

5 689.43 684.76 667.3

6 784.5 778.38 754.08

1 29.644 29.048 27.075

2 117.55 116.66 113.02

Ti Alloy 3 185.41 181.53 169.13

4 517.85 507.04 471.96

5 626.32 622.08 606.24

6 715.21 709.65 687.51

1 32.887 32.217 30.005

2 130.7 129.5 125.47

Al Alloy 3 205.7 201.33 187.42

4 574.49 562.32 522.96

5 703.12 698.35 680.49

6 794.37 788.13 763.53
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Table 4: Comparison of Natural Frequency with and without
crack at 150 mm crack location

150mm crack location

Natural Frequency (Hz)

Mode

Shape

without

crack

2mm

crack

depth

4mm

crack

depth

1 23.656 23.554 23.234

2 93.849 93.713 93.23

Cu Alloy 3 147.97 147.09 143.63

4 413.25 409.89 398.27

5 503.77 503.67 502.53

6 571.19 569.99 564.46

1 32.503 32.363 31.925

2 128.91 128.73 128.07

Mg Alloy 3 203.3 202.11 197.37

4 567.79 563.19 547.32

5 689.43 689.3 687.74

6 784.5 782.4 775.27

1 29.644 29.517 29.119

2 117.55 117.38 116.77

Ti Alloy 3 185.41 184.33 180.04

4 517.85 513.68 499.28

5 626.32 626.2 624.79

6 715.21 713.7 706.81

1 32.887 32.744 32.297

2 130.7 130.31 129.64

Al Alloy 3 205.7 204.48 199.64

4 574.49 569.8 553.56

5 703.12 702.98 701.38

6 794.37 792.69 785

Table 5: Comparison of Natural frequency for without
crack

Natural Frequency Without

Crack

Mode

Shape

Copper

Alloy

Mg

Alloy

Ti

Alloy

Al

Alloy

1 23.656 32.503 29.644 32.887

2 93.849 128.91 117.55 130.7

3 147.97 203.3 185.41 205.7

4 413.25 567.79 517.85 574.49

5 503.77 689.43 626.32 703.12

6 571.19 784.5 715.21 794.37

Table 6: Comparison of Natural Frequency with different
crack location at 2 mm crack depth

Crack
2mm crack depth

location
Natural Frequency (Hz)

Mode

Shape

Cu

Alloy

Mg

Alloy

Ti

Alloy

Al

Alloy

1 23.176 31.846 29.048 32.217

2 93.136 127.94 116.66 129.5

50mm 3 144.84 199.02 181.53 201.33

4 404.53 555.87 507.04 562.32

5 500.35 684.76 622.08 698.35

6 566.72 778.38 709.65 788.13

1 23.466 32.243 29.408 32.621

2 93.573 128.54 117.2 130.11

100mm 3 146.63 201.48 183.76 203.84

4 409.23 562.3 512.88 568.88

5 504.62 690.6 627.39 704.31

6 569.27 781.87 712.82 790.169

1 23.554 32.363 29.517 32.744

2 93.713 128.73 117.38 130.31

150mm 3 147.09 202.11 184.33 204.48

4 409.89 563.19 513.68 569.8

5 503.67 689.3 626.2 702.98

6 569.99 782.4 713.7 792.69
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It can be seen that in every mode shape Cu Alloy has
minimum natural frequency while Al Alloy has maximum
natural frequency. To reduce these natural frequencies
cracks are introduced in different location with different
crack depth and we analyzed that at 50 mm crack location
with 4mm crack depth natural frequency has a minimum
value for all alloys.
Now when frequency of alloys are compared with no crack
and with 9 cracks then It has been observed that frequency
decreases with number of cracks.

Table 7: Comparison of Natural Frequency with different
crack location at 4 mm crack depth

Crack 4mm crack depth

location Natural Frequency

Mode

Shape

Cu

Alloy

Mg

Alloy

Ti

Alloy

Al

Alloy

1 21.59 29.675 27.075 30.005

2 90.233 123.95 113.02 125.47

50mm 3 134.86 185.37 169.13 187.42

4 376.32 517.26 471.96 522.96

5 487.58 667.3 606.24 680.49

6 549.03 754.08 687.51 763.53

1 22.729 31.233 28.491 31.592

2 92.317 126.81 115.63 128.37

100mm 3 138.87 190.86 174.12 193.01

4 390.112 536.16 489.4 542.2

5 498.01 681.57 619.19 695.07

6 556.93 764.36 696.86 773.97

1 23.234 31.925 29.119 32.297

2 93.23 128.07 116.77 129.64

150mm 3 143.63 197.37 180.04 199.64

4 398.27 547.32 499.28 553.56

5 502.53 687.74 624.79 701.38

6 564.46 775.27 706.81 785

3.1 Natural frequencies for various mode shapes

The modal analysis of the alloy beam is done on ANSYS
14. The following are the different mode shapes to produce
natural frequency in composite beam

Figure 2 First mode of vibration

Figure 3 Second mode of vibration

Figure 4 Third mode of vibration

Figure 5 Forth mode of vibration

Figure 6 Fifth mode of vibration

Figure 7 Sixth mode of vibration



Husain Mehdi et al/ International journal of research in engineering and innovation (IJREI), vol 1, issue 1 (2016), 20-28

27

The first mode of vibration is a bending mode In this mode
shape, the beam is tending to bend about the root section’s
The analysis shows that the parameter that effect root
stiffness have a large impact on the first mode of frequency.
The first mode frequency is also affected by parameters
that effect tip mass.
The second mode of vibration is also a bending mode and
the natural frequency of second mode of vibration is greater
than the first mode of vibration.
The third mode of vibration is also bending mode with one
node formation about the root, the frequency is more than
the second mode .the deflection was in the vertical
direction. The frequency is correspondingly higher due to
increased stiffness in that direction.
The fourth mode of vibration is also bending mode with
two node formation. The frequency of fourth mode shape
is much higher than the above three modes.
The fifth mode of vibration is twisting about the root, the
frequency is affected by tip rotational moment of inertia.
The frequency of sixth mode shape have the highest
frequency in all the above mode shapes.
Mode 1: When the force is applied at right angles to the

surface of beam.
Mode 2: When the force is applied vertically &

horizontally on beam.
Mode 3: Node formation during free vibrations due to

forces at right angle to surface.
Mode 4: Two node formation during free vibrations of

the beam.
Mode 5: Twisting of beam by fixing one end
Mode 6: Natural vibration of the composite beam under

transverse loading i.e. force acting along the
width of beam.

4. Conclusion
The mechanical properties of aluminum alloy, magnesium
alloy, titanium alloy and copper alloy were found by using
computational method.
From the above results, following conclusions can be made
 Table 1 shows the comparison between the mechanical

properties like tensile yield strength, tensile ultimate
strength of all four alloys.

 From Figure-1 it can be concluded that the tensile
strength of Ti alloy is highest amongst all alloys taken
and has a minimum deflection comparison to all alloy

 The natural frequency decreases with increasing crack
depth.

 From table 2-7 it has been observed that natural
frequency decreases when number of cracks increases.
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