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1. Introduction 

 

Agriculture plays a vital role in the supply of food globally. 

Various environmental factors cause the ill health of plants 

and effect the crop yields.  The early detection of plant 

diseases is essential to prevent large-scale crop losses. 

Traditional manual methods of plant disease detection 

involve visual inspection by experts, which is labor-intensive, 

time-consuming, and likely to be error-prone. In recent years, 

machine learning and deep learning techniques have gained 

popularity for detecting plant diseases, demonstrating high 

efficiency and accuracy. The application of these techniques 

in agriculture and farming enhances decision-making 

regarding crop selection, optimal farming practices, and 

Abstract  

 

Application of Artificial intelligence (AI) in agriculture sector plays an important role 

to enhance the yields by predicting and detecting the plant diseases and improving 

health of the crop.  The early detection of plant diseases is crucial and helpful to the 

farmers to minimize the crop loss and ensure healthy crop. However, the traditional 

manual methods, are time consuming, error-prone, and inefficient for large-scale 

farming. Adopting recent technologies in Artificial Intelligence (AI) and Deep 

Learning, particularly Convolutional Neural Networks (CNNs) in the recent years have 

revolutionized the automation process of plant disease detection. However, single-

modal approaches depend on only RGB images often fail to capture critical 

physiological and biochemical changes in plants. To overcome these limitations, we 

propose a Single-Stream CNN in Multi-Modal Plant Disease Detection, integrating 

RGB, thermal, and hyperspectral imaging into a unified model. Unlike traditional multi-

stream architectures that increase computational complexity, our model processes 

multi-modal data as a single 4-channel input tensor, optimizing feature fusion while 

maintaining computational efficiency. The proposed architecture, based on a Modified 

VGG-16 CNN model, which enhances disease detection accuracy by leveraging 

complementary information from different imaging modalities. Experimental 

evaluations demonstrate significant improvements in classification accuracy compared 

to RGB-only models. Furthermore, our model is optimized for real-time deployment on 

edge computing devices, making it scalable for precision agriculture applications, 

including automated greenhouse monitoring, drone-based crop surveillance, and IoT-

integrated farming systems. This research work highlights the transformative potential 

of AI-driven multi-modal plant disease detection, flagging the way for more efficient, 

cost-effective, and scalable agricultural solutions.                ©2025 ijrei.com. All rights reserved 
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seasonal activities. However, traditional approaches primarily 

rely on unimodal image data, limiting their ability to capture 

biochemical changes in plants. With the rapid growth of 

multimedia data, there is an increasing need for AI techniques 

capable of analyzing heterogeneous data sources. The 

emergence of multimodal AI techniques addresses these 

limitations by extracting features from various types of image 

data, including RGB, thermal, and hyperspectral images. 

 

1.1 Multimodal AI 

 

Multimodal AI models are systems that can process and 

integrate data from numerous sources, such as text, images, 

audio, and video. They can be used to improve accuracy and 

efficiency in a variety of applications, including 

manufacturing, visual question answering, and image 

generation. Multimodal AI helps farmers to check the status 

of the crops by using a combination of satellite images, 

weather data, and soil information. This integrated analysis 

assists in making decisions about irrigation and fertilization to 

optimize crop yields. The key advantages of using 

multimodal AI system in agriculture includes: Enhanced crop 

health monitoring, Precision farming, Improved yield 

prediction, Optimized irrigation management, Pest and 

disease control, Data-driven decision making, Automated 

field operations, Reduced labour costs. The multimodal data 

that can be used in agriculture comprises Satellite imagery, 

drone imagery, IoT based soil sensors data, whether data in 

text etc. Multi-modal imaging, which integrates multiple 

sources of information such as RGB and thermal imaging, has 

demonstrated potential in enhancing plant disease detection. 

Thermal imaging captures temperature variations that may 

indicate disease-related stress, while RGB images provide 

essential colour and texture details. In this paper we propose a 

Single-Stream CNN that fuses these two modalities into a 

four-channel input tensor, which is then processed using a 

deep learning model. 

The succeeding sections of this paper are structured as 

follows: Section 2 presents a review of previous research on 

plant disease detection using AI techniques, Section 3 

outlines the proposed methodology, Section 4 discusses 

result analysis and challenges, and Section 5 concludes with 

potential future research directions. 

 

2. Literature Review 

 

Agriculture plays a vital role in ensuring global food security. 

However, plant diseases posture a major challenge to crop 

productivity, resulting in substantial economic losses and 

food shortages. Traditional disease detection methods, such 

as manual inspection, are time-consuming, labour-intensive, 

and prone to inaccuracies. Recent advancements in artificial 

intelligence (AI), image processing and computer vision have 

introduced promising solutions for automated plant disease 

detection. Convolutional Neural Networks (CNNs), in 

particular, have achieved high accuracy in image-based 

classification tasks [1]. However, relying solely on single-

modal image data (e.g., RGB images) has limitations in 

detecting subtle disease patterns. To address this, a multi-

modal imaging approach that combines RGB, thermal, and 

hyperspectral imaging has been proposed to improve 

detection accuracy [2]. 

 

2.1 Role of AI in Plant Disease Detection 

 

AI-driven models, especially deep learning techniques, have 

significantly advanced plant disease identification. CNNs 

have shown robust feature extraction capabilities, making 

them suitable for classifying plant diseases from leaf images 

[3]. Traditional machine learning approaches, such as Support 

Vector Machines (SVM) and Random Forest classifiers, 

require handcrafted features, limiting their adaptability to 

diverse disease symptoms. Deep learning, on the other hand, 

enables automatic feature extraction and classification 

without manual intervention [4]. 

 

2.2 Multi-Modal Image Data: Enhancing Disease Detection 

 

The use of multi-modal image data provides a more 

comprehensive view of plant health. While RGB images 

capture surface-level symptoms, thermal imaging detects 

temperature variations associated with disease-induced stress 

[5]. Hyperspectral imaging provides spectral signatures that 

reveal biochemical changes in plants before visible symptoms 

appear [6]. By integrating these imaging techniques, AI 

models can achieve higher sensitivity and specificity in 

disease detection [7]. 

 

2.3 CNN-Based Classification Models for Multi-Modal 

Image Fusion 

 

CNNs have been widely used for plant disease classification 

due to their ability to learn spatial hierarchies of features. 

Traditional CNN architectures, such as AlexNet, VGG-16, 

and ResNet, have been employed for plant disease 

classification using RGB images [8]. However, to effectively 

process multi-modal data, specialized architectures, such as 

Modified VGG-16 or Fusion CNNs, have been developed. 

These models integrate features from different modalities at 

various levels, enabling robust decision-making [9]. The 

Recent advancements from 2020 to 2025 have significantly 

improved AI-driven plant disease detection which includes: 

In a research paper Alnaggar et al. (2023) [10] introduced a 

dataset comprising multispectral and RGB images to detect 

rice plant diseases. Their deep learning model demonstrated 

improved accuracy by integrating Red, Green, and Near-

Infrared channels. Sebastian et al. (2024) [11] proposed 

ViTaL, a Vision Transformer-based model, enhancing feature 

extraction and model performance in plant disease 

identification. Under Hybrid Machine Learning and Image 

Segmentation Techniques, Marques et al. (2024) developed 

"Plant Doctor," an AI system combining YOLOv8 and Deep 

SORT algorithms to diagnose urban plant health using video 

analysis [12]. Emphasizing Multi-Prediction Approaches in 
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Deep Learning in a research study Yao et al. (2023) [13] 

proposed the GSMo-CNN model for multi-output plant 

disease classification, achieving state-of-the-art accuracy on 

standard datasets. A research study in BMC Plant Biology 

highlighted the effectiveness of integrating attention 

mechanisms into Shuffle Net and RestNet-50 for vegetable 

disease detection for Multisource Information Fusion [14]. 

Several studies have demonstrated the superiority of multi-

modal CNN models over single-modal approaches. A 

comparative study on apple disease detection showed that a 

multi-modal CNN model combining RGB and hyperspectral 

images achieved 96.8% accuracy, whereas an RGB-based 

model achieved only 87.5% accuracy [15]. Similarly, a fusion 

model integrating thermal and RGB images improved early 

disease detection in wheat crops by 12% compared to RGB-

only models [16]. These findings emphasize the need for a 

comprehensive AI-driven approach that leverages multi-

modal imaging for improved accuracy and reliability. 

 

2.4 Need for the Proposed Single-Stream CNN Model 

 

Given the advancements and limitations outlined in the 

literature review, we have proposed a novel model named 

Single-Stream CNN in Multi-Modal Plant Disease Detection, 

it aims to address key challenges in existing AI-based models. 

While multi-modal approaches incorporating RGB, thermal, 

and hyperspectral imaging have demonstrated improved 

disease detection accuracy, many of these methods rely on 

separate processing streams for each modality, increasing 

computational costs and model complexity. The Single-

Stream CNN model integrates features from all three imaging 

modalities within a unified network, reducing redundant 

computations and enhancing feature fusion efficiency. This 

approach is inspired by the success of Fusion CNNs [9] but 

optimizes processing by employing shared layers for early-

stage feature extraction, ensuring better generalization across 

diverse datasets. Furthermore, our model leverages recent 

advancements in Vision Transformers [11] and multi-

prediction deep learning [13] to improve feature selection and 

robustness. Additionally, the Single-Stream CNN model is 

designed to be computationally efficient, making it suitable 

for real-time deployment in edge devices and cloud-based 

APIs, enabling broader adoption in precision agriculture [12]. 

 

3. Proposed Methodology 

 

Deep learning has been widely applied in plant disease 

classification using CNNs. Popular architectures like VGG-

16, ResNet, and EfficientNet have been fine-tuned for crop 

monitoring. However, most existing models depend only on 

RGB images, ignoring other valuable modalities like thermal 

imaging, text data. Recent studies have explored multi-modal 

fusion techniques, such as separate CNN streams for different 

modalities, followed by feature fusion. While multi-stream 

CNNs have shown improvements, they are computationally 

expensive and unsuitable for real-time deployment on low-

power devices. In this section we present our Single-Stream 

CNN model architecture (Fig. 1) which provides an efficient 

alternative by stacking RGB and thermal images into a single 

input tensor, reducing computational complexity while 

preserving rich feature representations. The proposed model 

Architecture for Single-Stream CNN in Multi-Modal Plant 

Disease Detection is as follows: 

 

 
Figure 1: Single-Stream CNN in Multi-Modal Plant Disease 

Detection Model Architecture 

 

The system architecture in the above Fig. 1 shows the Single-

Stream CNN model for plant disease detection used in this 

research work. The model utilizes multiple types of images 

(RGB, Thermal, and Hyperspectral) to enhance the accuracy 

of disease detection. The architecture is broken down into 

several stages, each playing a crucial role in data processing, 

model training, validation, and deployment. 

 

3.1 Data Acquisition 

 

The first step in the architecture involves collecting different 

types of multi-modal images of plant leaves to detect diseases 

accurately. The three types of images acquired are: 

• RGB Images: Standard colour images capturing the 

visible spectrum, commonly used in computer vision 

tasks. 

• Thermal Images: Capturing heat variations to detect 

stress or infections in plants. 
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• Hyperspectral Images: Providing detailed spectral 

information that can reveal chemical compositions and 

hidden disease patterns. 

These different imaging modalities provide complementary 

information, helping the model to make more informed 

predictions. 

 

3.2 Data Pre-Processing 

 

Once the images are collected, they undergo various pre-

processing steps to ensure they are in a suitable format for 

training. The main pre-processing techniques applied are: 

• Resizing: It ensures all images are of the same 

dimensions to be compatible with the CNN model. 

• Normalization: This process standardizes pixel values to 

a specific range (e.g., 0-1) to stabilize training and 

improve convergence. 

• Augmentation: This process applies transformations like 

flipping, rotation, and brightness adjustments to increase 

dataset variability and reduce overfitting. 

• Concatenation: This process merges multiple modalities 

(RGB, thermal, hyperspectral) to create a unified dataset, 

enhancing feature extraction. 

Pre-processing is a critical step that improves the quality of 

the dataset and optimizes it for efficient training. 

 

3.3 CNN Model Architecture (Modified VGG-16) 

 

The foundation of the system is a Convolutional Neural 

Network (CNN), with a Modified VGG-16 architecture 

shown in Fig. 2 serving as its core. VGG-16, a well-known 

deep learning model originally designed for image 

classification tasks, has been adapted to process multi-modal 

plant images that incorporate both RGB and thermal data. 

Unlike the standard VGG-16, which typically accepts three-

channel (RGB) images, this modified version has been 

adjusted to handle four-channel input (RGB + Thermal), 

allowing the model to extract features from both visible and 

thermal spectrums simultaneously. To efficiently process this 

data, the system employs a single-stream CNN approach, 

meaning that both RGB and thermal information are fed into 

a unified network rather than separate branches. This 

integration ensures that the network can learn correlations 

between visible and thermal features, improving the model's 

ability to detect plant diseases, stress conditions, or other 

anomalies. Furthermore, the architecture has been optimized 

for edge deployment, making it lightweight and efficient for 

real-time inference on edge devices like embedded systems, 

mobile devices, or IoT-based agricultural monitoring systems. 

This modification helps reduce computational complexity 

while maintaining high accuracy, making it ideal for on-field 

plant health assessments. 

The Convolutional Neural Network (CNN) model (Fig. 2) is 

structured hierarchically to progressively extract features and 

classify plant diseases with high accuracy. The architecture is 

based on VGG-16 but has been modified to improve 

efficiency and adapt to multi-modal inputs (RGB + Thermal) 

for better disease detection. Key Modifications to VGG-16 

includes:  

• Input Shape Modification: The standard VGG-16 

architecture accepts three-channel RGB images (224 × 

224 × 3), but the modified version is designed to handle 

four-channel input (224 × 224 × 4) to integrate both RGB 

and thermal data. This allows the model to leverage 

thermal imaging features, which can reveal plant stress, 

temperature variations, and other disease indicators that 

may not be visible in standard RGB images. 

• Fewer Fully Connected Layers: To enhance efficiency, 

the architecture includes fewer fully connected (dense) 

layers than the original VGG-16. This reduces the 

number of parameters, making the model lighter and 

more suitable for edge deployment, where computational 

resources are limited. 

• Batch Normalization & Dropout: Batch Normalization is 

added after convolutional layers to stabilize training, 

accelerate convergence, and improve generalization. 

Dropout layers are introduced in the fully connected 

layers to reduce overfitting, ensuring the model performs 

well on unseen plant images. 

• Softmax Output Layer: The final layer of the network 

employs a softmax activation function, enabling the 

system to perform multi-class classification of plant 

diseases. This means the model can differentiate between 

multiple plant conditions, such as healthy plants and 

various disease categories. 

 

 
Figure 2: Modified VGG-16 CNN Architecture 

 

3.3.1 Architecture Breakdown 

 

The Modified VGG-16 CNN Architecture depicted in Fig. 2 

breakdown in to following layers: 

• Input Layer: The model accepts a 4-channel input (224 × 

224 × 4), where RGB and Thermal images are stacked 

together to allow the CNN to process fused multi-modal 

information. 
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• Convolutional Blocks (Feature Extraction): The model 

retains five convolutional blocks, similar to standard 

VGG-16, but adapted for four-channel processing. Each 

block consists of: Conv2D layers with ReLU activation 

for hierarchical feature extraction, Batch Normalization 

to enhance training stability, Max-Pooling layers to 

progressively down sample the feature maps, reducing 

spatial dimensions while retaining essential information. 

• Fully Connected Layers (Classification): It includes 

Flatten Layers, Dense Layers, and Dropout Layers. The 

extracted features are flattened into a 1D vector using a 

Flatten layer. Dense (fully connected) layers with ReLU 

activation are used to learn complex feature 

relationships. Dropout layers are included to prevent 

overfitting, ensuring the model generalizes well to new 

data. 

• Output Layer: A softmax activation function is applied in 

the final layer, allowing the model to classify plant 

images into multiple disease categories (e.g., six plant 

diseases plus a healthy class). 

 

3.4 Model Training  

 

Once the CNN architecture is defined, the model is trained 

using the collected and pre-processed dataset. Training 

involves the following key steps: 

 

3.4.1 Data Splitting 

 

The dataset is divided into three parts: (i) Training Set: Here 

we split the 70% of the data which is used to train the CNN 

model. (ii)  Validation Set: In this set we keep 20% of the 

data to tune hyperparameters and prevent overfitting, and (iii) 

Test Set: Here we used the remaining 10% of the data to 

evaluate the model’s final performance. 

 

3.4.2 Loss Function & Optimizer 

 

Our model uses a loss function (Cross Entropy Loss) to 

measure the difference between predicted and actual outputs. 

Cross-entropy, also referred to as logarithmic loss or log loss, 

is a widely used loss function in machine learning for 

evaluating the performance of classification models. It 

quantifies the difference between the actual probability 

distribution of the target classes and the predicted 

probabilities generated by the model. Since our model 

classify the data into multiple classes so here, we use:   

Multiclass Cross-Entropy Loss, also known as categorical 

cross-entropy or softmax loss, is a widely used loss function 

for training models in multiclass classification problems. For 

a dataset with N instances, Multiclass Cross-Entropy Loss is 

calculated with the following formulae: 

 

−1NΣi = 1NΣj = 1C(yi,j.log(pi,j))   (1) 

 

Where, C is the number of classes, yi,j are the true labels for 

class j for instance i, pi,j is the predicted probability for class j 

for instance i.  

Adam Optimizer is employed here to adjust model 

parameters, minimizing errors over multiple iterations. 

Adaptive Moment Estimation (Adam) is an optimization 

algorithm for gradient descent that is highly efficient, 

particularly when handling large-scale problems with 

extensive data or numerous parameters. It is memory-efficient 

and effectively combines two gradient descent techniques:  

• Momentum-based optimization and RMSProp 

Momentum: This technique accelerates gradient descent 

by incorporating the exponentially weighted average of 

past gradients, helping the algorithm converge to the 

minimum more quickly. 

 

wt+1=wt−αmtwt+1=wt−αmt   (2) 

mt = βmt−1+(1−β) [δLδwt]   (3) 

 

where, mt = aggregate of gradients at time t [current] 

(initially, mt = 0), mt-1 = aggregate of gradients at time t-1 

[previous], Wt = weights at time t, Wt+1 = weights at time t+1, 

αt = learning rate at time t, ∂L = derivative of Loss Function, 

∂Wt = derivative of weights at time t, β = Moving average 

parameter (const, 0.9). 

• Root Mean Square Propagation (RMSP): Root Mean 

Square Prop (RMSprop) is an adaptive learning 

algorithm designed to enhance AdaGrad. Unlike 

AdaGrad, which accumulates the sum of squared 

gradients, RMSprop utilizes an exponential moving 

average of squared gradients to maintain a more stable 

and adaptive learning rate. 

 

wt+1 = wt−αt(vt+ε)1/2∗[δLδwt]   (4) 

vt = βvt−1+(1−β)∗[δLδwt]2   (5) 

 

where, Wt = weights at time t, Wt+1 = weights at time t+1, αt = 

learning rate at time t, ∂L = derivative of Loss Function, ∂Wt 

= derivative of weights at time t, Vt = sum of square of past 

gradients. [i.e sum(∂L/∂Wt-1)] (initially, Vt = 0), β = Moving 

average parameter (const, 0.9), ϵ = A small positive constant 

(10-8). 

 

3.4.3 Model Testing & Validation 

 

After training, the model is evaluated using various 

performance metrics to ensure its reliability in real-world 

applications. The evaluation includes the following metrics: 

• Accuracy: It is a measure that calculates how frequently 

a model correctly predicts the output. It is calculated by 

dividing the number of correct predicted results with the 

overall all predicted results [18]. 

 

Accuracy = 
𝑇𝑟𝑢𝑒positive+ 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒positive+ 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒positive+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(6) 

• Precision: It indicates the eminence of positive 

prediction generated by the model. Precision is 
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calculated by dividing the number of True Positive cases 

by the total number of positive cases [18]. 

 

Precision = 
𝑇𝑟𝑢𝑒positive

𝑇𝑟𝑢𝑒positive 𝐹𝑎𝑙𝑠𝑒positive
   (7) 

 

• Recall: It is a metric that measures how frequently a 

model identifies correctly True Positive cases from the 

actual positive samples from the dataset. It is calculated 

by dividing the number of True Positive cases with the 

True Positive and False Negative Cases [18]. 

 

Recall = 
𝑇𝑟𝑢𝑒positive

𝑇𝑟𝑢𝑒positive 𝐹𝑎𝑙𝑠𝑒negative
   (8) 

 

• F1-Score: It evaluates the accuracy of the model in a 

dataset. Evaluation of binary classification systems that 

categorize samples either 'positive' or 'negative' is done 

with this measure. It is calculated by taking the harmonic 

mean of precision and recall. It can be adjusted to 

emphasize precision upon recall, or the other way around 

[18].  

 

F1 Score = 2×
𝑟𝑒𝑐𝑎𝑙𝑙 ×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (9) 

 

• ROC-AUC Curve:  A Receiver Operating Characteristic 

(ROC) curve is a graph that shows the performance of a 

binary classification model. The area under the ROC 

curve (AUC) is a value that measures the model's 

performance These metrics provide insights into the 

model's strengths and weaknesses, guiding further 

improvements [19]. 

• Confusion Matrix: A confusion matrix for a CNN 

(convolutional neural network) is a table that visually 

displays how well the CNN model is performing by 

comparing its predicted classifications to the actual 

classifications of images in a test dataset, allowing you to 

see where the model is making mistakes and which 

classes it is getting confused between, essentially acting 

as a detailed report card for the model's performance on 

different image categories [20]. 

 

3.5 Model Deployment 

 

Once the model is trained and validated, it is deployed for 

real-world applications using various platforms including: 

• Edge Devices: These devices are used to Integrate the 

model into embedded systems for on-site plant disease 

detection. 

• Cloud-Based API:  Through Cloud based API our model 

able to provide remote access via cloud servers for large-

scale agricultural monitoring. 

• Mobile App Integration: Integration of our model with 

mobile applications facilitates the farmers to easily detect 

the diseases instantly in the field. 

By deploying the model across different platforms, it 

becomes accessible and scalable for agricultural users. 

 

3.6 Real-World Applications 

 

At the final stage we focus on applying the trained CNN 

model to practical agricultural situations. Some key 

applications in the real world include: 

• Automated Greenhouse Monitoring which enables real-

time disease detection in controlled farming 

environments. 

• Drone-Based Crop Surveillance, uses drones to scan 

large fields, identifying diseased plants efficiently. 

• IoT-Connected Farming Systems, which integrates the 

model with IoT devices to provide continuous plant 

health monitoring. 

These applications determine the practical impact of deep 

learning in smart agriculture, improving crop yield and 

reducing losses due to plant diseases. 

This architecture outlines a comprehensive AI-driven 

approach for plant disease detection using multi-modal image 

data and a CNN-based classification model. By leveraging 

RGB, thermal, and hyperspectral images, and employing a 

Modified VGG-16 network, the system enhances disease 

detection accuracy. Furthermore, its deployment in edge 

devices, cloud-based APIs, and mobile apps makes it highly 

accessible for real-world agricultural applications, ultimately 

supporting smart farming and precision agriculture. 

 

4. Implementation & Results 

 

In this section we discussed the results obtained after 

implementing the model in python programming language. 

For implementing the above proposed model, we utilize 

TensorFlow and Keras to build and train a CNN model for 

plant disease classification, incorporating layers like Conv2D, 

MaxPooling2D, Batch Normalization, and Dropout to 

enhance performance. Image Data Generator is used for 

image preprocessing and augmentation, while L2 

regularization helps prevent overfitting. NumPy facilitates 

numerical computations, and Scikit-Learn assists in handling 

class imbalances, generating classification reports, and 

computing confusion matrices. Matplotlib and Seaborn 

visualize training performance and results, including 

accuracy/loss graphs and heatmaps. Additionally, the trained 

model is converted into a TensorFlow Lite (TFLite) format, 

making it suitable for deployment on edge devices and 

mobile applications. The results obtained after executing the 

python code are discussed in the following paragraphs in 

various stages: 

 

4.1 Data Acquisition & Data Preprocessing 

 

We have collected the data of groundnut plant leaves dataset 

from the data repository Mendeley Data. In this dataset 

Images of leaves are categorized into six distinct groups 

according to their condition. Collected images are pre-
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processed and the processed images of groundnut leaves are 

kept in 6 folders as: the "healthy leaves" folder with 1871 

images, the "early leaf spot" folder with 1731 images, the 

"late leaf spot" folder with 1896 images, the "Nutrition 

deficiency" folder with 1665 images, the "rust" folder with 

1724 images, and the "early rust" folder with 1474 images. 

The total number of images in the dataset is 10361 [21].  

The sample preprocessed training images of the classified 

leaves in to six classes are depicted in the following Fig. 3. 

 

 
Figure 3:  Sample Pre-processed Training Images 

 

The Dataset is splitted into training and testing set with the 

ratio of 80/20 respectively. Feature Scaling is a technique to 

standardize the independent features present in the data in a 

fixed range. It is performed during the data pre-processing to 

handle highly varying magnitudes or values or units. If 

feature scaling is not done, then a machine learning algorithm 

tends to weigh greater values, higher and consider smaller 

values as the lower values, regardless of the unit of the 

values. Here, we have used Min-Max Scaler. This scaling 

brings the value between 0 and 1. After features are extracted 

from the images, they are saved in HDF5 file. The 

Hierarchical Data Format version 5 (HDF5), is an open-

source file format that supports large, complex, 

heterogeneous data. HDF5 uses a "file directory" like 

structure that allows us to organize data within the file in 

many different structured ways. 

The images shown in Fig. 4 displays the predicted results of a 

plant disease classification model, showing four leaf images 

with their corresponding model predictions and ground truth 

labels. Each leaf is annotated with "Pred:" (Predicted Class) 

and "True:" (Actual Class), with correct predictions in green 

and incorrect predictions in red. From the above resulted 

image, it is observed that first two images (Left Side) are 

Correctly Predicted, where both leaves are correctly classified 

as "rust_1", with predictions perfectly matching the actual 

class (green text). This suggests that the model is highly 

accurate in detecting rust disease. Third Image (Middle) is 

also Correctly Predicted. The model correctly identifies a 

"healthy_leaf_1", confirming its ability to distinguish disease-

free leaves. Fourth Image (Right) is incorrectly Predicted. 

The model misclassifies an early leaf spot as a healthy leaf 

(red text), highlighting a common challenge where early-

stage infections resemble healthy leaves. This aligns with the 

confusion matrix findings shown in the next section, where 

early leaf spot had a high misclassification rate. The model 

successfully identifies most disease categories, but 

misclassification of early leaf spot remains a challenge. 

Addressing this issue will further boost the model’s reliability 

for real-world applications. 

 

 
Figure 4:  Predicted Results 

 

4.2 Result Analysis  

 

After preprocessing the data, we have trained the proposed 

model Modified VGG-16 with (80%) of the train data. Then 

the model is evaluated with respect to the evaluation metrics 

Precision, Recall, F1-Score, and Support. The results 

obtained are shown in the following table 1. 

 
Table 1: Experimented results of Valuation Metrics 

 Precision Recall F1-Score Support 

Early_leaf_spot_1 0.90 0.56 0.96 409 

Early_rust_1 1.00 0.98 0.99 409 

Healthy_leaf_1 0.68 0.95 0.79 409 

Late_leaf_spot_1 0.93 0.98 0.96 405 

Nutrition_deficiency_1 0.98 1.00 0.99 410 

rust_1 1.00 0.93 0.96 409 

Accuracy 0.90 2451 

Macro Average 0.92 0.90 0.90 2451 

Weighted Average 0.92 0.90 0.90 2451 

 

From the above table 1, we can see that our model has 

achieved 90% overall accuracy, with high precision and recall 
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across most classes. The early rust, late leaf spot, and 

nutrition deficiency classes exhibit near-perfect classification, 

indicating that the model effectively learns features related to 

these diseases. However, early leaf spot has a low recall 

(56%), suggesting that many actual cases of this disease are 

being misclassified. Additionally, the healthy leaf class has a 

precision of 68%, meaning that some healthy leaves are 

mistakenly labelled as diseased. This misclassification could 

be due to similar features shared between healthy and 

diseased leaves, leading to overlapping decision boundaries. 

To address these issues, several optimizations are 

recommended. Stronger data augmentation, including 

increased rotation, brightness variation, and zooming, can 

help the model generalize better for early leaf spot cases. 

Class weights should be adjusted to prioritize 

underrepresented or misclassified classes, ensuring a more 

balanced learning process. To prevent overfitting, introducing 

learning rate decay will help stabilize training, especially in 

later epochs. Additionally, integrating transfer learning with 

VGG-16 can significantly improve feature extraction, 

leveraging pre-trained filters to capture complex patterns 

more effectively. Implementing these optimizations is 

expected to enhance recall for early leaf spot, increase 

precision for healthy leaf classification, and create a more 

robust and generalizable model with balanced performance 

across all classes. 

 

4.2.1 Confusion Matrix 

 

After executing the proposed model on the above said dataset 

the resulted confusion matrix shown in Fig. 5. It visualizes 

the model's performance across six different classes. Each 

row represents the actual class, while each column represents 

the predicted class. The confusion matrix reveals that the 

model performs exceptionally well for most classes, 

achieving high accuracy in Early Rust, Late Leaf Spot, and 

Nutrition Deficiency, with minimal misclassifications. 

Healthy Leaf and Rust classes also show strong performance, 

though some minor errors persist. However, the biggest 

challenge lies in Early Leaf Spot, where 181 samples are 

misclassified, mostly as Healthy Leaf, indicating that the 

model struggles to differentiate between these two categories. 

This misclassification likely stems from similar visual 

characteristics between early-stage leaf spots and healthy 

leaves, leading to overlapping decision boundaries. 

Additionally, 26 Rust samples are incorrectly predicted as 

Healthy Leaf, further reinforcing the need for improved 

feature extraction. To enhance model performance, transfer 

learning with VGG-16 or RestNet-50, increased data 

augmentation, class weight adjustments, and contrast 

enhancement techniques (CLAHE) can be employed. Fine-

tuning the learning rate in later epochs will also refine 

decision boundaries, ensuring better generalization. Overall, 

while the model demonstrates strong classification 

capabilities, targeted optimizations for Early Leaf Spot 

differentiation can push accuracy beyond 90%, making it 

even more robust and reliable. 

4.2.2 Accuracy & Loss Graph 

 

The accuracy and loss graphs depicted in Fig. 6 indicate a 

strong learning progression in the optimized model over 20 

epochs. The training accuracy steadily improves, reaching 

approximately 80%, while validation accuracy follows a 

similar upward trend, stabilizing around 70-75% in later 

epochs. The small gap between train and validation accuracy 

suggests that the model is generalizing well, with no 

significant overfitting. However, minor fluctuations in 

validation accuracy, particularly between epochs 7-12, may 

indicate some learning instability, possibly due to class 

imbalance or challenging features within the dataset. 

 

 
Figure 5: Resulted Confusion Matrix 

 

The loss graph further supports these observations, with both 

training and validation loss decreasing consistently, 

demonstrating effective error minimization. While the initial 

validation loss is quite high (~14), it drops rapidly within the 

first few epochs, signifying that the model quickly learns key 

patterns before fine-tuning its performance. Although 

validation loss remains slightly higher than training loss (~1.5 

vs. 1.0), it does not exhibit severe overfitting. 

 

 
Figure 6:  Accuracy & Loss Graph 
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To further optimize performance, implementing learning rate 

decay can stabilize fluctuations, while enhanced data 

augmentation will improve class differentiation. Additionally, 

fine-tuning dropout and regularization can help refine 

generalization and prevent potential overfitting. Overall, the 

model exhibits strong classification capability, achieving 80% 

accuracy with stable validation performance (~75%), making 

it highly reliable for real-world applications. 

 

4.3 Discussion 

 

Challenge 1 

 

The high misclassification rate between early leaf spot and 

healthy leaves in the proposed Modified VGG-16 model is 

primarily attributed to feature similarities that exist between 

the two classes, making it difficult for the model to accurately 

differentiate them. Several key visual similarities contribute 

to the misclassification, such as: 

• Minimal Visual Differences in Early Stages 

• Overlapping Color Intensity and Texture Patterns 

• Inadequate Feature Differentiation in Early Disease 

 

Future Extension: To address the high misclassification rate, 

the following advanced feature extraction methods can be 

integrated: 

• Integrate Grad-CAM to visualize misclassified regions 

and retrain the model to prioritize spot-based features. 

• Use attention mechanisms (like Vision Transformers or 

Self-Attention) to amplify small, localized disease 

features. 

• Augment training data with artificial noise, spot overlays, 

and color distortions to make the model robust to subtle 

feature changes. 

• Combine RGB and thermal imaging for dual-modality 

feature extraction, ensuring that thermal stress zones in 

diseased leaves are captured. 

• Introduce class reweighting during training, emphasizing 

early leaf spot samples to increase model sensitivity 

toward minimal symptoms. 

 

Challenge 2 

 

Impact of Dataset Distribution on Model's Classification 

Performance and Class Imbalance effect. 

The dataset imbalance in the current research work 

significantly impacted the model’s performance, particularly 

for the early leaf spot class, resulting in low precision and 

recall. The dominance of majority classes (like Nutrition 

Deficiency and Rust) led to biased learning, reducing the 

model’s effectiveness in detecting early-stage diseases. 

However, by applying data augmentation, class weight 

balancing, and advanced CNN architecture, the model's 

performance on minority classes significantly improved. 

Future Extension: Future research will be focused on 

synthetic data generation, multi-modal learning, and transfer 

learning to eliminate bias caused by dataset imbalance and 

further improve the model’s accuracy, particularly for early 

leaf spot detection. 

 

5. Conclusion and future work 

 

The integration of multi-modal image data with CNN-based 

classification models offers a more reliable and precise 

approach to plant disease detection. By leveraging the 

strengths of RGB, thermal, and hyperspectral imaging, AI-

driven models can detect diseases earlier and with higher 

accuracy. Although challenges exist, ongoing advancements 

in deep learning and image fusion techniques will pave the 

way for more efficient and scalable solutions in smart 

agriculture. In this paper we present a Single-Stream CNN for 

multi-modal plant disease detection, integrating RGB and 

thermal imaging into a unified 4-channel input tensor. The 

proposed model achieves high classification accuracy while 

maintaining efficiency for real-time deployment on edge  

Our proposed model demonstrates high accuracy (90%), with 

strong classification performance for most disease categories, 

particularly “rust, late leaf spot, and nutrition deficiency”, 

where precision and recall exceed “95%”. The model 

effectively generalizes across different plant disease types, as 

evident from its stable accuracy and loss curves, minimal 

overfitting, and strong performance in predicted results and 

confusion matrix analysis. However, early leaf spot 

classification remains a challenge, with a noticeable 

misclassification rate, often being predicted as a healthy leaf. 

This suggests the need for more refined feature extraction 

techniques to distinguish early disease symptoms from 

normal variations in leaf texture and color.   

Future research should focus on enhancing feature learning 

capabilities by incorporating transfer learning with deep 

architectures like VGG-16 or RestNet-50, which can extract 

more detailed and hierarchical patterns. Additionally, contrast 

enhancement techniques (such as CLAHE) can help improve 

disease visibility in early stages. Data augmentation strategies 

should also be expanded, introducing illumination variations 

and multi-angle image capture, ensuring the model learns 

robust and diverse disease features. Furthermore, attention 

mechanisms and transformer-based vision models (e.g., 

Vision Transformers - ViTs) could be explored to improve 

classification accuracy in cases where: disease symptoms are 

subtle or overlapping. Finally, deploying this model in real-

world agricultural scenarios via mobile applications or edge 

computing devices can facilitate real-time disease detection, 

bridging the gap between research and practical 

implementation.  
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