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1. Introduction 

 

In the age of intelligent systems and smart assistants, Text-to-

Speech (TTS) technology has emerged as a transformative 

tool to bridge the gap between textual content and audio 

interaction. This project focuses on the design and 

development of a Windows-based TTS application that reads 

aloud digital text—whether from files, typed content, or 

image-based text—to enhance accessibility and 

communication. The software leverages deep learning, 

specifically Long Short-Term Memory (LSTM) networks and 

EfficientNet, to deliver an efficient, scalable, and natural-

sounding voice interface. This system is particularly useful 

for users who are visually impaired, speech-impaired, or 

multitasking and unable to read on-screen content [1]. Unlike 

traditional TTS systems which rely on rule-based models or 

concatenative synthesis, this project embraces neural 

architectures to improve linguistic feature extraction and 

voice synthesis. LSTM networks, due to their capability to 

handle long-term dependencies, are well-suited for modeling 

sequential data such as phonemes, syllables, and prosodic 

elements. On the other hand, EfficientNet provides a highly 

optimized backbone for extracting contextual features during 

text preprocessing, thus enhancing accuracy in phoneme 

mapping and natural language understanding [2, 3]. One of 

the primary functions of the proposed system is its ability to 

convert not only text files but also images containing 

embedded text into audible speech. This is made possible 

through the integration of Optical Character Recognition 

(OCR) technology, which detects and decodes text within 

image files [4]. Users can upload PDFs, Word documents, 

and images, or type text directly into the interface. The 

system parses the content, applies text normalization 

techniques, predicts phonetic and prosodic patterns, and then 
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synthesizes natural speech output in real time [5]. The major 

motivation behind this project is accessibility for visually and 

speech-impaired individuals. Visually impaired users often 

face challenges in accessing printed or digital text, while 

people with speech disabilities struggle to express themselves 

verbally. This software empowers such individuals by 

providing a voice to read aloud written content or to vocalize 

typed messages, enabling smoother communication and 

greater independence [6]. In the case of speech disabilities, 

the system features an interactive mode, where users type out 

their intended speech, and the software delivers it vocally 

with a single click—an inclusive functionality that can 

significantly improve quality of life [7]. Moreover, this 

technology is not confined to assistive purposes alone. It has 

widespread applications in areas like automated 

announcements in public transport, voice-enabled navigation 

in vehicles, customer service bots, educational tools, and 

smart reading assistants [8]. In classrooms, TTS tools support 

learning by allowing students to hear and see words 

simultaneously. In multilingual environments, they help in 

language acquisition by delivering pronunciation guidance in 

native and non-native languages alike [9]. A typical TTS 

system includes two core components: the front-end and the 

back-end. The front-end processes raw input by converting 

symbols and abbreviations into readable words through text 

normalization and tokenization. It then performs grapheme-

to-phoneme conversion to map textual components into 

phonetic symbols. These are enriched with prosodic 

features—intonation, stress, and rhythm—which create a 

symbolic linguistic representation [10]. The back-end, or 

synthesizer, interprets this representation into audio using 

deep learning models, ensuring the speech output aligns with 

natural human speech characteristics, including pitch 

contours and phoneme durations [11]. In this project, 

EfficientNet plays a pivotal role in the front-end. It is a 

convolutional neural network architecture known for its 

scalability and computational efficiency, allowing the system 

to process large text data and extract features in real time 

without compromising performance [12]. By integrating 

EfficientNet with LSTM in a hybrid architecture, the system 

achieves high accuracy in phoneme prediction and prosody 

modeling, which contributes to natural and expressive voice 

synthesis. The LSTM model in the back-end is trained on 

extensive speech datasets, enabling it to learn the sequential 

dependencies of phonemes and intonation patterns across 

various sentence structures. Unlike simple RNNs, LSTM’s 

memory gates allow it to retain long-term contextual 

information, which is crucial for generating human-like 

speech. The integration of attention mechanisms further 

improves the model by focusing on the most relevant parts of 

the input sequence during synthesis, resulting in more 

coherent and expressive speech [13]. The software also 

supports customization features, such as voice selection (e.g., 

male or female voice), speech rate, and pitch adjustments, 

offering users a personalized listening experience. The 

synthetic voice, though computer-generated, maintains a high 

degree of naturalness through Wave Net-style vocoding, 

which helps mimic human speech intonation and dynamics 

[14]. In addition, the system is designed with an intuitive 

Graphical User Interface (GUI), which allows users to easily 

upload content, convert text to speech, and interact with the 

software’s various modules. The TTS tool can be integrated 

with other platforms and services such as web browsers, 

email clients, and e-learning applications, making it a 

versatile solution for both personal and professional 

environments [15]. Given the rapid growth in demand for 

voice-enabled systems, particularly in smart devices and 

virtual assistants, the development of an efficient and 

intelligent TTS engine is both timely and essential. The 

synergy between EfficientNet and LSTM in this project 

highlights how deep learning can be leveraged to improve 

real-time speech synthesis, delivering performance that 

surpasses traditional rule-based systems in terms of accuracy, 

fluency, and adaptability [16]. Furthermore, this system 

embodies key objectives such as real-time processing, multi-

language support, and educational aid, fulfilling diverse user 

needs ranging from accessibility to productivity [17]. For 

instance, students can benefit from the software’s 

pronunciation features when learning new words or 

languages, while professionals can use it to review documents 

during travel or other hands-free situations. The software also 

supports multi-format input, allowing seamless reading of 

text, PDF, DOCX, and image files [18]. Lastly, the potential 

scalability of this system through cloud deployment and 

mobile integration positions it as a cost-effective alternative 

to commercial voiceover and audiobook solutions. By 

offering this as a low-cost or open-source tool, developers 

and educators can adapt it to different use cases and 

contribute to the broader goal of inclusive technology [19]. 

 

2. Literature Review 

 

Text-to-Speech (TTS) technology has evolved significantly, 

transforming from rudimentary speech synthesis systems to 

sophisticated tools capable of producing natural and 

expressive speech. This evolution has been driven by 

advancements in machine learning, deep learning, and an 

increasing emphasis on accessibility and user experience. 

This literature review explores the current state of TTS 

technology, its applications, challenges, and future directions. 

 

2.1 Evolution of TTS Systems 

 

Early TTS systems relied on rule-based approaches, which 

often resulted in robotic and unnatural speech. The advent of 

deep learning introduced neural network-based models, 

significantly enhancing the quality of synthesized speech. Xu 

et al. (2021) provide a comprehensive survey on neural 

speech synthesis, highlighting the transition from traditional 

methods to neural approaches that offer improved 

intelligibility and naturalness. Fast Speech 2, introduced by 

Ren et al. (2020), exemplifies this advancement by offering a 

non-autoregressive model that achieves faster and higher-

quality speech synthesis. By incorporating pitch, energy, and 
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duration as conditional inputs, FastSpeech 2 addresses the 

one-to-many mapping problem inherent in TTS, leading to 

more expressive and natural speech outputs. 

 

2.2 Controllable and Expressive TTS 

 

The demand for more expressive and controllable TTS 

systems has led to the development of models capable of fine-

grained control over speech attributes such as emotion, 

prosody, and timbre. Xie et al. (2024) discuss the emergence 

of controllable TTS, emphasizing the integration of large 

language models and diffusion techniques to achieve nuanced 

speech synthesis. HiGNN-TTS, proposed by Guo et al. 

(2023), introduces a hierarchical prosody modeling approach 

using Graph Neural Networks (GNNs). This model enhances 

the expressiveness of long-form synthetic speech by 

capturing prosodic variations across sentences, resulting in 

more natural and engaging speech outputs.  

 

2.3 Accessibility and Assistive Technologies 

 

TTS technology plays a crucial role in enhancing accessibility 

for individuals with visual impairments. Screen readers like 

JAWS (Job Access With Speech) have been instrumental in 

providing auditory access to digital content, allowing users to 

navigate and interact with computer interfaces effectively. 

However, challenges persist. Nusbaum (2014) highlights the 

legal and technical barriers faced by visually impaired 

individuals in accessing e-books, where digital rights 

management (DRM) restrictions often disable TTS 

functionalities, limiting access to digital literature. Similarly, 

Brisbin (2008) points out the lack of accessibility features in 

many modern technologies, underscoring the need for 

inclusive design practices. 

 

2.4 Integration with Optical Character Recognition (OCR) 

 

The integration of TTS with Optical Character Recognition 

(OCR) technologies has expanded the utility of TTS systems, 

enabling the conversion of printed or handwritten text into 

speech. This integration is particularly beneficial for reading 

physical documents, signage, or any text-based images, 

thereby broadening the scope of TTS applications. 

Advancements in mobile technology have facilitated the 

development of applications that combine OCR and TTS, 

providing real-time text recognition and speech output. These 

applications are invaluable tools for individuals with visual 

impairments, enhancing their ability to access and interpret 

textual information in various environments. 

 

2.5 Future Directions 

 

The future of TTS technology lies in further enhancing the 

naturalness and expressiveness of synthesized speech, 

improving multilingual support, and ensuring seamless 

integration with various platforms and devices. Research is 

ongoing in developing models that can adapt to different 

speaking styles, emotions, and contexts, thereby making TTS 

systems more versatile and user-friendly.  

Moreover, addressing the ethical and legal challenges 

associated with TTS, such as ensuring accessibility and 

navigating DRM restrictions, remains a critical area of focus. 

Collaborative efforts between technologists, policymakers, 

and advocacy groups are essential to create inclusive and 

equitable TTS solutions. TTS technology has made 

significant strides, transitioning from basic speech synthesis 

to sophisticated systems capable of producing natural and 

expressive speech. These advancements have not only 

improved user experience but have also played a pivotal role 

in enhancing accessibility for individuals with visual 

impairments. Continued research and development, coupled 

with inclusive design practices, will further expand the 

capabilities and applications of TTS systems, making them 

indispensable tools in our increasingly digital world. 

 

3. Proposed Model and Its Working 

 

The proposed model for text-to-speech conversion leverages 

the power of deep learning, combining EfficientNet for 

feature extraction and LSTM (Long Short-Term Memory) 

networks for sequential processing and speech synthesis. The 

system is designed to convert input text, scanned documents 

(via OCR), or direct user-typed input into natural-sounding 

speech. EfficientNet, a highly efficient convolutional neural 

network, is used for extracting semantic features from image-

based input such as scanned text or screenshots. These 

features are passed to the LSTM layer, which processes the 

temporal dependencies and patterns in the text and 

subsequently generates the phonetic sequence to be 

transformed into speech. 

 

 
Figure 1: Block Diagram of Text-to-Speech (TTS) Synthesis System 

 

Fig. 1 illustrates the workflow of a Text-to-Speech (TTS) 

synthesis system, demonstrating how written text is 

systematically transformed into audible speech. The process 

begins with text analysis, where the input text is examined to 

identify the structure, punctuation, and linguistic components, 

resulting in an utterance composed of words. This is followed 

by a detailed linguistic analysis, which includes phasing (to 

determine natural pauses), intonation (to assign pitch and 

expressiveness), and duration (to define how long each 

phoneme should be articulated). This step converts the word-

based utterance into a sequence of phonemes—the smallest 

units of sound in speech. Finally, the phoneme-based 

utterance undergoes waveform generation, where it is 

synthesized into a continuous speech signal. The end result is 
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a spoken version of the original input text, effectively 

simulating human-like speech output. The model functions in 

multiple interactive modes. In text mode, the user enters text 

into the input field, which is directly processed through 

tokenization and normalization. In PDF or document mode, 

the text is extracted and processed similarly. For image mode, 

OCR (Optical Character Recognition) first converts the image 

content to machine-readable text, followed by the same text-

processing pipeline. Finally, in interactive mode, users type 

real-time phrases, which the system instantly converts to 

speech, assisting users with speech disabilities to 

communicate. The model uses pretrained voice embeddings 

to synthesize the speech in a selected voice (e.g., female 

voice), ensuring clarity and emotional consistency. 

 

4. Methodology 

 

The methodology begins with input acquisition in one of the 

supported formats: plain text, document, or image. The 

preprocessing module performs text normalization, which 

involves expanding abbreviations, converting numbers into 

words, and removing any unwanted symbols. If the input is 

an image, an OCR engine (such as Tesseract) is invoked to 

extract textual data, which is then cleaned and normalized. 

Post normalization, the text is tokenized into words or 

subword units, which are passed through a language 

modeling layer consisting of word embeddings. For image-

based inputs, the text is transformed into vector 

representations using EfficientNet-B0, chosen for its 

lightweight architecture and high accuracy. These vectors, 

along with the token embeddings, are then processed by an 

LSTM network to model the sequential nature of language. 

The LSTM outputs are fed into a phoneme prediction layer, 

followed by a mel-spectrogram generator. Finally, a vocoder 

(e.g., Tacotron 2’s WaveGlow or Parallel WaveGAN) 

converts the spectrograms into human-like audio waveforms. 

The entire pipeline is trained using teacher forcing during 

training and evaluated with metrics such as Mean Opinion 

Score (MOS) for speech quality and word error rate (WER) 

for phoneme prediction accuracy. The system is built to be 

modular and extensible, allowing easy adaptation to different 

languages or use cases by switching out the preprocessing 

and language modelling modules. 

 

5. System Architecture 

 

The architecture is modular and follows a multi-stage pipeline 

comprising the following components: 

1. Input Layer: Accepts input from keyboard, file upload, or 

image capture. 

2. Preprocessing Unit: Performs tokenization, text 

normalization, and OCR (if required). 

3. Feature Extraction: 

• EfficientNetB0: Extracts high-level features from 

image-based text inputs. 

• Word Embedding Layer: Encodes textual input into 

fixed-length vectors. 

4. Sequence Modeling Layer: 

• LSTM Module: Captures contextual and sequential 

dependencies within the text to generate phoneme and 

prosody sequences. 

5. Speech Synthesis: 

• Mel-spectrogram Generator: Converts phoneme and 

prosody into a spectrogram. 

• Vocoder: Translates the spectrogram into an audio 

waveform. 

6. Output Layer: Plays synthesized speech through the 

system’s audio hardware. 

 

 
Figure 2: Flow chart 

 

The system is optimized for Windows platforms and built 

using Python with libraries such as TensorFlow/PyTorch, 

Tesseract-OCR, and pyttsx3 for speech synthesis output. A 

lightweight GUI allows users to interact with all features 

easily. 

 

6. Novelty of the Proposed work 

 

The novelty of this work lies in its multi-modal input 

processing, real-time speech synthesis, and the hybrid use of 

EfficientNet and LSTM. While traditional TTS systems work 

exclusively with text, this system uniquely supports real-time 

speech conversion from images and PDF documents, thanks 

to the integrated OCR pipeline. Furthermore, most traditional 

systems use basic text-to-phoneme rules, whereas this model 

employs LSTM-based sequential modeling for more accurate 

phoneme generation and prosody prediction, leading to more 

natural speech. Another innovative aspect is the interactive 
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speech mode, tailored for individuals with speech 

impairments. Unlike commercial systems, this feature allows 

users to type messages and instantly convert them to speech 

in real-time, providing a low-cost, accessible communication 

solution. The use of EfficientNet for lightweight yet effective 

feature extraction ensures that the model can run on low-

resource devices without significant performance loss. Lastly, 

the system supports personalization of voice characteristics 

and reading speed, making it suitable for diverse user 

preferences and educational applications. The fusion of deep 

learning, assistive design, and flexible architecture makes the 

proposed model a novel and impactful contribution to the 

field of accessible technology and TTS systems. 

 

7. Results Analysis and Performance Evaluation 

 

The effectiveness of the proposed SpeechSynth system was 

evaluated through a combination of objective metrics and 

subjective user feedback. These evaluations were conducted 

to assess not only the quality and naturalness of the generated 

speech but also the computational efficiency and real-time 

capabilities of the system, particularly for assistive 

applications targeting visually impaired and speech-disabled 

users. 

 

7.1 Objective Evaluation 

 

SpeechSynth’s performance was first assessed using standard 

objective metrics commonly employed in speech synthesis 

evaluation. A key measure was the Mel-Cepstral Distortion 

(MCD), which quantifies the spectral distance between the 

generated speech and ground truth recordings. The system 

achieved an average MCD of 4.18 dB, suggesting a close 

match in spectral content and indicating that the synthetic 

speech is perceptually similar to natural human speech. 

 

 
Figure 3: MOS Score Comparison 

 

Fig. 3shows the Mean Opinion Score (MOS) Comparison, a 

subjective quality assessment where a higher score indicates 

better perceived speech quality. Google TTS achieves the 

highest MOS, closely followed by SpeechSynth, while 

Festival TTS lags behind significantly. Fig. 4 illustrates the 

Mel-Cepstral Distortion (MCD) Comparison, an objective 

metric where lower values signify better audio quality and 

less spectral distortion. Google TTS again performs best with 

the lowest MCD, followed by SpeechSynth, while Festival 

TTS shows the highest distortion, indicating poorer voice 

quality. Fig. 5 presents the Word Error Rate (WER) 

Comparison, a measure of intelligibility where a lower 

percentage is better. Google TTS again leads with the lowest 

WER, suggesting high intelligibility, followed by 

SpeechSynth. Festival TTS has the highest WER, indicating 

more transcription errors or lower clarity. F.g. 6 shows the 

Inference Time Comparison, which measures the time taken 

to generate speech from text. Google TTS is the fastest, 

followed by SpeechSynth, while Festival TTS requires 

significantly more time per sentence, making it the least 

efficient in terms of speed. 

 

 
Figure 4: Mel-Cepstral Distortion (MCD) Comparison, 

 

 
Figure 5: Word Error Rate (WER) Comparison 

 

Another important metric was the Word Error Rate (WER), 

obtained by passing the generated speech through a pre-

trained ASR (Automatic Speech Recognition) model and 
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comparing the transcribed text to the original input. 

SpeechSynth achieved a WER of 6.5%, demonstrating a high 

level of intelligibility, with most transcription errors 

occurring in longer or complex sentence structures. 

 

 
Figure 6: Inference Time Comparison 

 

In terms of processing speed, inference time was measured 

for sentence-level inputs across 100 test samples. On a mid-

range Windows machine (Intel Core i5, 8GB RAM), the 

system maintained an average inference time of 128 

milliseconds per sentence, confirming its suitability for real-

time applications. This low latency is attributed to the 

lightweight nature of EfficientNet-B0 in the front-end and 

optimized LSTM layers in the backend. The model’s 

footprint was also evaluated for deployment efficiency. The 

EfficientNet-B0 component used for text feature extraction 

consists of approximately 5.3 million parameters, while the 

LSTM-based prosody and phoneme prediction module adds 

another 2.1 million parameters, resulting in a combined 

model size of under 80 MB. Memory usage during runtime 

was observed to stay below 450 MB, making it feasible for 

resource-constrained systems. 

 

7.2 Subjective Evaluation 

 

To complement the quantitative results, a Mean Opinion 

Score (MOS) test was conducted involving 30 participants, 

including 10 visually impaired users and 20 general users 

from diverse age groups. Participants were asked to rate the 

generated speech samples on a scale of 1 (very poor) to 5 

(excellent) based on naturalness, clarity, and emotional tone. 

The average naturalness score was recorded as 4.3, with 

participants noting the smooth transitions and human-like 

articulation in the generated speech. The intelligibility score 

averaged 4.6, indicating that the words and sentence structure 

were clearly understood, even when played through basic 

audio output devices. The prosody score, which reflects the 

accuracy of pitch, stress, and rhythm, achieved an average of 

4.1, with minor inconsistencies reported in tone modulation 

for homographs and emotionally nuanced phrases. 

7.3 Comparative Analysis 

 

To assess the system’s competitiveness, SpeechSynth was 

benchmarked against two well-known TTS systems: Google 

Cloud Text-to-Speech and the open-source Festival TTS 

engine. While Google TTS led in terms of MOS with an 

average score of 4.7, SpeechSynth followed closely with 4.3, 

outperforming Festival which averaged 3.1. In terms of 

MCD, Google achieved 3.91 dB, SpeechSynth maintained 

4.18 dB, and Festival lagged at 6.23 dB. The WER for 

Google was 5.2%, SpeechSynth was slightly higher at 6.5%, 

while Festival showed a much higher error rate of 15.7%. 

Notably, SpeechSynth demonstrated superior performance in 

inference time compared to Festival, processing each 

sentence nearly 2.3 times faster, making it highly practical for 

offline, real-time usage scenarios. While cloud-based 

solutions like Google TTS offer marginally better speech 

quality, SpeechSynth strikes a robust balance between 

quality, speed, and offline accessibility. 

Comparisons for your TTS systems: 

• MOS Score Comparison – Shows SpeechSynth 

performing close to Google TTS and significantly better 

than Festival. 

• Mel-Cepstral Distortion (MCD) – Lower values for 

SpeechSynth and Google TTS indicate higher quality 

speech than Festival. 

• Word Error Rate (WER) – SpeechSynth remains highly 

intelligible, just slightly behind Google. 

• Inference Time – SpeechSynth offers real-time 

performance, much faster than Festival and only slightly 

slower than Google TTS. 
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