

Corresponding author: Virat

Email Address: virrattomar1@gmail.com

https://doi.org/10.36037/IJREI.2025.9409 205

International Journal of Research in Engineering and Innovation Vol-9, Issue-4 (2025), 205-210

Hotel booking and listing

Tarun Verma, Virat, Saurabh Kumar, Tanishq Kumar, Amol Sharma

Department of Computer Science and Engineering, Meerut Institute of Technology, Meerut, India

__

1. Introduction

The evolution of web-based hotel reservation portals has

revolutionized the established industry benchmarks with their

huge inventories of hotels and homestays, interactive search

filters, dynamic pricing, user ratings, and secure payment

gateway integration. These sites generally have mature

backend systems and scalable databases, which are developed

to run on microservices architectures, cloud hosting, and

RESTful APIs to support millions of users and update data in

real-time. Though such sites provide cutting-edge

functionality, they are built with huge teams, huge cost, and

often proprietary technology, making them inaccessible to

learners and small-scale developers. Other features of hotel

reservation systems have also been addressed in scholarly

literature. A paper by Li and Law (2007) addressed the

influence of customer comments and ratings on reservation

decisions and suggested that social proof features be

incorporated into hotel reservation systems. A paper by Ham,

Kim, and Jeong (2005) addressed the role of usability and

interface design in generating user confidence and

satisfaction, and it challenged the developers to go beyond

functionality to user-centered design principles. From the

technology stack point of view, the majority of modern web

applications make use of Node.js because of its event-driven,

non-blocking nature that is well-designed for real-time data

such as availability and booking status. Tilkov and Vinoski's

(2010) work offers the advantages of the use of JavaScript

across the stack—server-side and client-side—that enables

development efficiency and maintainability. MongoDB,

which is a NoSQL database, has also gained immense

popularity because of the freedom it provides while handling

Abstract

In this work, we explore the design and deployment of a full-stack hotel booking and listing web

application, reflecting the growing influence of digital technologies in the hospitality and tourism

industries. As traditional booking methods—such as phone calls, walk-ins, and emails—decline,

travelers increasingly prefer real-time, transparent, and user-friendly web platforms. To meet

these demands, we developed a dynamic system using the MERN-style stack (Node.js,

Express.js, MongoDB, and EJS), offering a seamless experience for users to search, filter, and

book hotel rooms. The application includes core functionalities such as user registration,

authentication, hotel listing management, real-time booking, and a review and rating system to

support user decision-making. A standout feature is the integrated chatbot module, providing

interactive assistance with typing animations, contextual feedback, and a conversational interface.

The backend ensures secure data handling, structured MongoDB storage, and well-documented

Express.js routing using the MVC architecture for maintainability and scalability. EJS templating

enables real-time dynamic rendering without full-page reloads, enhancing responsiveness. This

report documents the development process, tools, and challenges, and evaluates the application's

usability and scalability. Future enhancements include payment integration, AI-based hotel

recommendations, geolocation, and multilingual support, positioning the platform as a

comprehensive digital solution for modern travelers. ©2025 ijrei.com. All rights reserved

Article Information

Received: 11 May 2025

Revised: 18 May 2025

Accepted: 04 June 2025

Available online: 05 June 2025

Keywords:

Power BI

Sales Dashboard

Data Visualization

Business Intelligence

Sales Analytics

International Journal of Research in Engineering and Innovation

(IJREI)
journal home page: http://www.ijrei.com

ISSN (Online): 2456-6934

RESEARCH PAPER

https://doi.org/10.36037/IJREI.2025.9409
https://ijrei.com/table/volume-9/issue-4
https://ijrei.com/table/volume-9/issue-4
http://www.ijrei.com/

Tarun Verma et. al., /International journal of research in engineering and innovation (IJREI), vol 9, issue 4 (2025), 205-210

206

unstructured data and rapid development, especially where

there is dynamic content and frequent updates. The MVC

(Model-View-Controller) pattern, widely employed in web

development, has been well supported in literature for its

potential to decouple concerns, simplify prospects of chatbots

in improving website user experience. Følstad and Brandtzæg

(2017) found that conversational interfaces can make users

more interactive and satisfied if they are human-like and

context-aware. Creating a chatbot with typing animations and

bill generation in this project follows these study findings and

extends the scope of common hotel reservation systems by

making them interactive and intuitive systems. In spite of the

technological innovation in hotel booking systems, most of

the existing implementations are not open-source, editable, or

pedagogically transparent. This requirement highlights the

necessity of creating full-stack web applications that are

technologically appropriate and pedagogically useful,

especially for students and junior programmers.

2. Literature Review

The evolution of web-based hotel reservation portals has

revolutionized the hospitality industry significantly by

increasing accessibility, efficiency, and customer satisfaction.

Various architectures, facilities, and technologies have been

examined and applied in various studies over the past few

years to improve online booking. A critical review of existing

research and web-based hotel reservation portals relevant to

web-based hotel booking system design is presented in this

section. A few major commercial websites, like

Booking.com, Airbnb, and Agoda, have established industry

benchmarks with their huge inventories of hotels and

homestays, interactive search filters, dynamic pricing, user

ratings, and secure payment gateway integration. These sites

generally have mature backend systems and scalable

databases, which are developed to run on microservices

architectures, cloud hosting, and RESTful APIs to support

millions of users and update data in real-time. Though such

sites provide cutting-edge functionality, they are built with

huge teams, high costs, and often proprietary technology,

making them inaccessible to learners and small-scale

developers. Other features of hotel reservation systems have

also been addressed in scholarly literature. A paper by Li and

Law (2007) addressed the influence of customer comments

and ratings on reservation decisions and suggested that social

proof features be incorporated into hotel reservation systems.

A paper by Ham, Kim, and Jeong addressed the role of

usability and interface design in generating user confidence

and satisfaction, and it challenged developers to go beyond

functionality to user-centered design principles.

From the technology stack point of view, the majority of

modern web applications make use of Node.js because of its

event-driven, non-blocking nature that is well-suited for real-

time data such as availability and booking status. Tilkov and

Vinoski's (2010) work highlights the advantages of using

JavaScript across the stack—server-side and client-side—

which enables development efficiency and maintainability.

MongoDB, a NoSQL database, has also gained immense

popularity because of the freedom it provides while handling

unstructured data and enabling rapid development, especially

where there is dynamic content and frequent updates.

The MVC (Model-View-Controller) pattern, widely

employed in web development, is well supported in the

literature for its potential to decouple concerns, simplify

testing, and enable scalable code structures. Express.js, a

well-known web framework for Node.js, encourages the

MVC pattern and has a middleware architecture that

facilitates effortless routing and server-side logic.

Recent research has also explored the prospects of chatbots in

improving website user experience. Følstad and Brandtzæg

(2017) found that conversational interfaces can make users

more interactive and satisfied if they are human-like and

context-aware. Creating a chatbot with typing animations and

bill generation in this project follows these study findings and

extends the scope of common hotel reservation systems by

making them interactive and intuitive systems.

In spite of the technological innovation in hotel booking

systems, most of the existing implementations are not open-

source, editable, or pedagogically transparent. This

requirement highlights the necessity of creating full-stack

web applications that are technologically appropriate and

pedagogically useful, especially for students and junior

programmers.

3. Methodology

The hotel listing and web application booking development

process was architecture, user-centric features, and fluid

interaction. This section presents the technologies utilized,

system design, development phases, and key implementation

strategies.

3.1 System Architecture

The application employs the Model-View-Controller (MVC)

paradigm to isolate business logic, user interface, and data

operations separately:

• Model: It is the data structure and is tasked with

communicating with the MongoDB database for

handling hotels, users, bookings, and reviews.

• View: Created using EJS (Embedded JavaScript

Templates) to render dynamic HTML pages by taking

advantage of data sent by the controller.

• Controller: It is written in Express.js and is utilized for

the application logic, the routing, and model and view

interaction.

3.2 Technology Stack

Table 1provides an overview of the technology stack used in

the development of the hotel booking web application,

categorized by different layers of the system architecture.

The frontend is built using HTML5, CSS3, JavaScript, and

Tarun Verma et. al., /International journal of research in engineering and innovation (IJREI), vol 9, issue 4 (2025), 205-210

207

EJS, enabling the creation of a responsive and dynamic user

interface. On the backend, Node.js and Express.js are

employed to handle server-side operations, including routing,

API creation, and middleware management. The database

layer utilizes MongoDB, a NoSQL database known for its

flexibility and scalability, allowing efficient storage and

retrieval of user, hotel, and booking data. For dynamic web

page rendering, EJS (Embedded JavaScript Templates) is

used as the template engine, allowing real-time content

updates and custom views without full page reloads. Finally,

Git and GitHub are employed for version control, enabling

collaborative development, efficient tracking of code

changes, and secure source code management. Together,

these technologies provide a robust, scalable, and

maintainable framework for building a full-stack hotel

booking application.

Table 1: Technology Stack Used in the Hotel Booking Web

Application

Layer Technology Used

Frontend HTML5, CSS3, JavaScript, EJS

Backend Node.js, Express.js

Database MongoDB (NoSQL)

Template Engine EJS (Embedded JavaScript Templates)

Version Control Git & GitHub

3.3 Development Phases

The development of the hotel booking web application was

carried out in multiple structured phases. Phase 1 focused on

planning and requirement analysis, where the core

functionalities were identified, including user registration,

hotel listings, room booking, chatbot interaction, and a

review system. Wireframes and flowcharts were created for

key interfaces such as the hotel detail page, booking form,

and chatbot UI to visualize the user journey. In Phase 2,

backend development was initiated using Node.js and

Express.js. A connection to MongoDB was established via

Mongoose, with schemas defined for User, Hotel, Booking,

and Review models. Secure user login and authorization were

implemented using Passport.js and session-based

authentication. Phase 3 involved frontend development,

where responsive user interfaces were built using HTML,

CSS, and EJS. Interactive views were created for hotel

filtering, booking forms with real-time validation, and review

submission pages. The chatbot was also integrated with

typing effects and live responses for a more dynamic

experience. In Phase 4, a custom JavaScript-based chatbot

was developed to guide users through hotel reservations with

features such as typing animations, a realistic billing UI, and

prompt-based interactions. It was placed contextually within

the hotel detail pages. Phase 5 introduced the rating and

review system. Users could leave reviews only after

successful bookings, and the backend ensured that only

logged-in users could submit them. Real-time average rating

calculations were displayed per hotel. Phase 6 focused on

testing and error handling. Server-side validation was

handled using Joi to sanitize inputs, and functional testing

ensured smooth routing, form submissions, and overall

booking logic. Middleware was added to handle errors and

display user-friendly messages. Finally, in Phase 7, version

control was managed through Git, with regular commits

documenting each module. The project was tested locally and

prepared for deployment on platforms such as Render,

Railway, or Heroku.

3.4 Security Measures

To ensure the security of the application, several protective

mechanisms were implemented. Passwords are securely

hashed using encryption methods to prevent unauthorized

access. Input validation is enforced throughout the system to

safeguard against injection attacks and other malicious

inputs. Additionally, access to key functionalities—such as

booking a hotel or posting a review—is restricted to

registered and authenticated users only, maintaining the

integrity of user-generated content.

3.5 Tools Used

A variety of tools supported the development and

management of the application. Visual Studio Code served as

the primary development environment, offering a flexible

and efficient coding experience. Postman was utilized for

API testing and validation of server responses during

backend development. MongoDB Compass provided an

intuitive interface for managing the MongoDB database,

enabling easier inspection and manipulation of stored data.

Finally, Git and GitHub were used for version control and

team collaboration, ensuring proper tracking of changes and

seamless integration of development modules.

4. Results

The hotel listing and booking web application was

successfully implemented and created as a full-stack web

solution that adheres to functional and non-functional

requirements taken into account at the planning phase. The

completed application can carry out a set of core operations

with ease and provide users with an interactive and reliable

hotel booking experience. The outcomes are grouped below

to illustrate functionality, performance, user experience, and

additional features.

4.1 Functional Achievements

The application successfully achieved all its intended

functional goals, delivering a complete and interactive hotel

booking experience. User authentication and authorization

were effectively implemented, allowing users to securely

register, log in, and log out. Access control ensured that only

authenticated users could make bookings or post reviews,

maintaining system integrity. The hotel listing and

Tarun Verma et. al., /International journal of research in engineering and innovation (IJREI), vol 9, issue 4 (2025), 205-210

208

administration module featured a dynamic interface that

displayed available hotels, each with a dedicated detail page

showing descriptions, prices, amenities, reviews, and a

booking form. Hotel data was fetched in real-time from

MongoDB and rendered using EJS templates for seamless

user interaction. The booking system allowed users to select

check-in/check-out dates, provide guest information, and

confirm bookings, which were then stored in the database and

reflected on the user’s profile. A booking confirmation

mechanism was also integrated. The review and rating feature

was designed so only users who had completed a stay could

leave a review, ensuring authenticity. Reviews appeared with

timestamps and usernames, while each hotel displayed an

average rating to aid user decisions.

Finally, chatbot integration enhanced user support by

providing hotel details, answering booking-related queries,

and simulating a real-time billing interface based on user

preferences, thereby enriching the overall booking

experience.

4.2 User Experience

The application ensures intuitive navigation. Pages are

responsive and adapt on devices and screen sizes. The chatbot

and booking features are blended seamlessly without

compromising on usability. Use of EJS allows for live

updates without reloads of the whole page, which improves

responsiveness.

4.3 Performance and Reliability

The app functions correctly in local test environments.

MongoDB can handle low-latency data reads and writes.

Routes, middleware, and forms were extensively tested via

Postman as well as testing manually. All the main flows

(register → login → view hotels → book → review →

chatbot) worked flawlessly without crashes or significant

bugs.

4.4 Error Handling and Security

Input validation was performed on client as well as server

sides. It dealt with errors like invalid booking dates, repeated

reviews, or unauthorized activity in a graceful manner.

Security features like hashed passwords (bcrypt) and session-

based authentication ensured the protection against

unauthorized access and data breaches.

4.5 Screenshots

Fig. 1 illustrates the homepage interface of the hotel booking

application, showcasing dynamic hotel listings fetched from

the database. Each listing includes an image, name, and price

per guest, providing users with a visually organized and

accessible overview. The navigation bar includes essential

features such as search functionality, user login, signup

options, and the ability to add new listings, thereby enhancing

user interaction and system usability.

Figure 1: Homepage with Hotel listings.

Figure 2: Hotel detail view with chatbot and booking form

Fig. 2 presents the detailed hotel view interface, where users

can access specific information about each property, such as

pricing, amenities, and room availability. The page integrates

a booking form and an interactive chatbot designed to assist

users in real time with queries regarding check-in dates, guest

count, and bill details. This layout enhances the user

experience by combining informative content with functional

booking support in a seamless manner.

Figure 3: Booking confirmation Page

Fig. 3 illustrates the booking confirmation interface, which

provides real-time feedback upon successful hotel

reservation. A success message is prominently displayed to

inform users that booking details have been sent to their

registered email. The page also includes hotel location

information and an integrated chatbot for continued

assistance, ensuring a streamlined and reassuring user

experience post-booking.

Tarun Verma et. al., /International journal of research in engineering and innovation (IJREI), vol 9, issue 4 (2025), 205-210

209

Figure 4: Review section for hotels.

Fig. 4 displays the review interface where authenticated users

can submit feedback based on their stay. The section includes

a star-based rating system, a text box for comments, and a

visible submission button. Integrated alongside the chatbot,

this feature promotes user engagement and transparency by

showcasing all reviews under the form, contributing to

credibility and informed booking decisions.

Figure 5: Chatbot Interface.

Figure 5 highlights the chatbot feature designed to assist users

with hotel pricing and discounts. The bot initiates

conversation in a friendly tone and guides users based on

predefined prompts like 'price' or 'discount'. This interactive

component enhances user support, delivering instant

responses and improving the overall experience during the

booking process.

5. Future Scope

While the current implementation of the hotel booking and

listing web application fulfills essential functionalities and

offers a seamless user experience, there is significant

potential for future expansion and enhancement. With the

growing demand for digital booking solutions in the

hospitality sector, the following future advancements can be

considered to improve scalability, usability, intelligence, and

real-world applicability. The future enhancement of the hotel

booking application involves integrating several advanced

features to improve user experience, automation, and

scalability. One key improvement is the integration of an

online payment gateway. Currently, the platform lacks real-

time payment functionality. Incorporating secure gateways

such as Razorpay, Stripe, or PayPal would enable seamless

in-app transactions. This enhancement would also support

automated invoice generation, email-based payment

confirmations, and efficient handling of refunds and

cancellations. Another valuable addition is real-time

availability and dynamic pricing. Implementing automated

room availability checks and price adjustments based on

seasonal trends, holidays, or occupancy rates would provide

users with more accurate information. These updates could be

managed through scheduled tasks (cron jobs) or external

APIs. The application could also benefit from location-based

services integration. Using tools like the Google Maps API,

users would be able to search for nearby hotels, get

directions, and filter listings based on proximity to landmarks

or event venues, enhancing navigation and decision-making.

To improve user interaction, the chatbot can be upgraded with

AI and machine learning capabilities. Enhancements like

natural language understanding, personalized hotel

recommendations, and multilingual support could be

achieved using platforms such as Dialogflow or Rasa.

Lastly, a notification system featuring SMS and email alerts

would streamline communication. It could confirm bookings,

send reminders about check-in/check-out dates, and deliver

personalized promotions, ensuring a more connected and

engaging user experience.

6. Advantages

The proposed hotel booking and listing web application offers

numerous advantages from both technical and user-centric

perspectives. The application is designed with several key

features that contribute to its functionality, security, and user

engagement. The user-friendly interface, developed using

HTML, CSS, JavaScript, and EJS, offers a clean, responsive,

and intuitive design that ensures seamless navigation across

devices, including desktops, tablets, and mobile phones. This

enhances the overall user experience by making the platform

accessible and easy to use. Dynamic data handling is

achieved through the integration of MongoDB as the database

and Express.js for backend routing. This allows real-time data

fetching and display, enabling users to view updated hotel

listings, reviews, and availability without the need to refresh

pages, thereby improving responsiveness and efficiency.

Security is addressed through a secure authentication system.

Passwords are hashed using bcrypt, and session-based login

mechanisms are implemented. Route protection and

middleware are used to restrict unauthorized access, ensuring

both user privacy and system integrity.

The application also includes an integrated review and rating

system, allowing only users who have completed bookings to

post reviews. This verification builds trust and helps new

users make informed decisions based on authentic

experiences. Additionally, an interactive chatbot assists users

by providing hotel information and answering booking-

related queries, adding a personalized and engaging support

element to the platform.

Tarun Verma et. al., /International journal of research in engineering and innovation (IJREI), vol 9, issue 4 (2025), 205-210

210

7. Conclusion

The development and implementation of the hotel booking

and listing web application successfully demonstrate the

practical integration of modern full-stack web technologies to

solve real-world problems in the hospitality domain. The

system was designed with a strong focus on modularity,

responsiveness, user interactivity and functional

completeness-offering features such as user registration,

secure authentication, hotel listing and booking a dynamic

review system and an intelligent chatbot assistant. Through

the use of technologies like Node.js, Express.js, MongoDB

and EJS, the project effectively applies the MVC architecture

to build a scalable, maintainable and efficient web

application.

The interactive chatbot feature and auto-generated bill

interface. Moreover, this project highlights the importance of

user-centered design, real-time dynamic data handling and

secure backend operations in creating robust applications. It

also serves as a strong learning foundation for students and

developers aiming to explore the full-stack development

process in-depth.

This project fills a practical gap between theoretical web

development knowledge and real-world application by

providing a working model that can be expanded with

features like payment integration, location-based services,

and advanced AI-driven recommendations.

References

[1] M. Fowler, Patterns of Enterprise Application Architecture. Boston,

MA: Addison-Wesley, 2003.

[2] E. Freeman and E. Robson, Head First Design Patterns, 1st ed.

Sebastopol, CA: O'Reilly Media, 2004.
[3] I. Sommerville, Software Engineering, 10th ed. Boston, MA: Pearson,

2015.

[4] N. Tilkov and S. Vinoski, "Node.js: JavaScript to Build High-
Performance Network Programs," IEEE Internet Computing, vol. 14,

no. 6, pp. 80-83, Nov.-Dec. 2010, doi: 10.1109/MIC.2010.145.

Cite this article as: Tarun Verma, Virat, Saurabh Kumar, Tanishq Kumar, Amol Sharma, Hotel booking and listing, International

Journal of Research in Engineering and Innovation Vol-9, Issue-4 (2025), 205-210.

 https://doi.org/10.36037/IJREI.2025.9409

https://doi.org/10.36037/IJREI.2025.9409

