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1. Introduction 

 

Routers are very important to the structure of computer 

networks because they find the fastest ways for data packets 

to get from source to target. Their performance has a direct 

impact on how well networks work generally, especially in 

places that need to be very reliable and quick to respond, like 

data centers, smart cities, Internet of Things (IoT) 

ecosystems, and the new 6G communication standard. In 

these situations, a lot is at stake: even small route delays or 

errors can cause the whole system to work less well or not at 

all. Routing systems like Dijkstra's algorithm, Bellman-Ford, 

OSPF, and AODV have been around for a long time and have 

been a solid base for making routing decisions in structured 

and mostly stable network environments. On the other hand, 

these protocols are mostly rigid or reactive, which means they 

aren't always good at handling how networks change over 

time. In particular, these traditional methods have trouble 

with real-time problems like sudden changes in the network's 

topology, changing traffic loads, changing link quality, and 

nodes that aren't always available because they're failing or 

moving around. These problems make it clear that we need 

routing systems that are not only more flexible, but also able 

to learn from and react to changing and complex network 

conditions. More people want fast, reliable, and low-latency 

communication. To meet this need, routing methods need to 

include intelligence and self-optimization. The study suggests 

a more advanced routing system that combines the idea of the 

shortest path with three types of artificial intelligence: Ant 

Colony Optimization (ACO), Reinforcement Learning (RL), 

and Genetic Algorithms (GA). ACO is based on how ants 

find food, and it helps find paths by using pheromone lines 

that show how good the path is and how often it is used. Over 

time, this lets the system find and strengthen the best route 

paths. Reinforcement Learning is a way of thinking about 

how routers make decisions by using feedback from the 

network world to change their strategies. This way, routers 

learn the best way to make decisions in different situations. 

Genetic algorithms use a population-based method to 

optimization, testing many possible solutions over 
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generations to reach goals like lowering latency, increasing 

throughput, and making fault tolerance better. The addition of 

these smart algorithms to the route process has a number of 

important benefits. First, they allow dynamic response to 

changes in the network in real time, which keeps performance 

at its best even when the system is under a lot of stress. 

Second, the probabilistic and learning-based parts of the 

network help it stay away from local minima and look into 

more route options. Third, GA's multi-objective optimization 

feature makes sure that trade-offs between different speed 

metrics are handled well. A lot of simulations were run in 

both static and dynamic network topologies to make sure that 

this intelligent routing system worked. Some performance 

measures, like end-to-end latency, throughput, packet 

delivery ratio, and how well the system handles node 

breakdowns, were looked at and compared to those of 

standard routing protocols. The results show that the 

suggested smart methods work much better than the old ways 

of doing things in all the areas that were tested, especially in 

situations with a lot of uncertainty and complexity. In this 

way, this study is a big step forward towards next-generation 

routing strategies. Giving routers the power to learn, change, 

and improve themselves in real time makes it possible for 

communication networks that are not only more efficient but 

also more secure and scalable. These smart transportation 

systems will likely be very important in the future when it 

comes to building communication systems that can keep up 

with the needs of more and more hyper-connected services 

and apps. 

 

2. Literature Review 

 

Because modern communication systems are getting more 

complicated and changing all the time, routing in computer 

networks has become an important area of study. In networks 

that are static and steady, traditional path-selection algorithms 

like Dijkstra's shortest path [7] and Bellman-Ford [8] have 

been used a lot. But these old ways of doing things don't work 

well when things change in real time, like when traffic 

changes, links fail, or bandwidth changes. These things 

happen a lot in today's big and complex networks. To deal 

with these problems, researchers are focusing more and more 

on combining intelligent computer concepts with routing 

algorithms. Ant Colony Optimization (ACO), which is based 

on how ants find food, has shown promise in dynamic routing 

by finding the best balance between exploring and using ways 

[1, 6]. In their groundbreaking work on ACO [1], Dorigo and 

Stützle created a bio-inspired metaheuristic that has been used 

to make routing more flexible by using pheromones to 

strengthen paths. Saleem et al. [6] looked at swarm 

intelligence methods in wireless sensor networks and showed 

how ACO can be flexible and reliable even when the 

topology changes. RL is a type of machine learning in which 

agents learn the best policies by making mistakes and trying 

again. It has been used in routing to make routers more 

flexible by letting them learn from network input in real time 

[2, 10, 14]. The in-depth work that Sutton and Barto did on 

RL [2] laid the theoretical groundwork for creating adaptive 

routing agents that can improve Quality of Service (QoS) 

measures like delay, loss, and jitter. Iqbal and Javaid [10] 

showed that RL-based congestion-aware routing works well 

in Mobile Ad Hoc Networks (MANETs). Meanwhile, Bui 

and Zhuang [14] created a QoS-aware routing system that 

uses RL to handle multihop wireless networks. Genetic 

Algorithms (GA), which are based on natural selection and 

genetics, are a powerful tool for optimizing routes across 

multiple objectives [3, 9, 11]. Holland's groundbreaking work 

[3] created the foundations for evolutionary computing, 

which is now used to find the best routing paths by taking 

into account many factors such as throughput, delay, and 

reliability. Al-Jubari et al. [9] suggested a GA-ACO hybrid 

method that uses the best parts of both algorithms to choose 

the best way in wireless networks. Singh and Garg [11] also 

talked about how GA can be used to improve routing methods 

by changing routing tables to better fit how networks change 

over time. Mobile Ad Hoc Networks (MANETs) and 

Software-Defined Networks (SDN) are two examples of 

dynamic topologies that modern networks need routing 

methods that can handle. On-demand route discovery is 

possible with protocols like AODV [8], but they don't have 

the advanced intelligence to guess and adapt ahead of time. 

Chlamtac et al. [12] talked about mobility and bandwidth 

awareness in routing and emphasized the need for metrics 

that are flexible in addition to the standard shortest path. The 

move towards 5G and beyond has also had an effect on 

routing research. For example, Hossain et al. [13] looked at 

technologies that make high throughput and low delay 

possible and found that they need smarter and more efficient 

routing algorithms. Machine learning and routing algorithms 

will likely play a big part in future networks when they are 

combined. Standards like IEEE 802.1Q [4] and IEEE 802.11 

[15] set the rules for LAN and wireless communication 

protocols. However, these protocols depend on routing 

methods that need to be improved all the time to support 

scalability and quality of service in a wide range of settings. 

To sum up, the literature study shows how important it is to 

use intelligent shortest path algorithms that combine 

traditional routing rules with AI methods such as ACO, RL, 

and GA to make routers work better. Traditional protocols 

have some problems that these methods fix by allowing 

dynamic adaptability, multi-objective Optimization, and 

better quality of service (QoS).  

 

3. Research Methodology 

 

This research adopts a structured design-based methodology 

aimed at developing and evaluating intelligent routing 

algorithms to optimize router performance in dynamic 

network environments. The methodology is divided into five 

key phases, each contributing systematically toward 

achieving the research objectives. 

 

3.1 Problem Analysis and Requirement Gathering 

 

The initial phase focuses on understanding the challenges 

faced by traditional routing algorithms in modern networks. 
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Key issues such as network congestion, fluctuating 

bandwidth, varying traffic loads, and link failures are 

identified. Through an extensive literature review and 

analysis of current network behaviors, specific requirements 

for an intelligent routing solution are defined. These 

requirements emphasize real-time adaptability, multi-metric 

optimization (including delay, throughput, and reliability), 

and scalability across different network topologies and sizes. 

 

3.2 Design and Development of Intelligent Routing 

Algorithms 

 

Based on the analysis of the problem, this step includes 

creating advanced routing algorithms that combine the idea of 

the shortest path with techniques from artificial intelligence. 

There are three main programs made:  

• Figuring out the quickest path using both the 

deterministic shortest path calculation of Dijkstra and 

the probabilistic exploration of ACO to find the best 

path while also being flexible.  

• Using Q-learning and Deep Q-Networks to help routers 

learn the best routing rules on the fly based on feedback 

from the network state.  

• Using genetic algorithms to create new routing paths 

that improve more than one quality of service measure 

at the same time.  

Setting up data structures, state and action spaces, reward 

functions, and evolutionary operators that work with network 

route situations is part of algorithmic design.  

 

3.3 Simulations and Real-World Applications in Network 

Settings  

 

Algorithms that have been created are put into simulation 

environments that act like real networks. Discrete-event 

simulations of different network topologies, such as static 

(mesh, ring, star) and dynamic (mobile ad hoc, random 

graphs), are done with tools like NS-3 and OMNeT++. 

Python tools like TensorFlow and PyTorch make it easier to 

train neural networks and test policies for reinforcement 

learning algorithms. Traffic generators imitate real-life data 

flows like VoIP, HTTP, and FTP to test how well a program 

works in different load situations. 

 

3.4 Performance Evaluation Using Standard Metrics 

 

Extensive performance evaluation is conducted to quantify 

the efficiency of the proposed algorithms. Metrics analyzed 

include: 

Average Delay: Time taken by packets from source to 

destination. 

Packet Delivery Ratio: Ratio of successfully delivered 

packets to those sent. 

Convergence Time: Duration required for routing tables to 

stabilize after topology changes. 

Routing Overhead: Number of control messages exchanged 

during route maintenance. 

Path Optimality: Comparison of selected paths against ideal 

shortest paths. 

Resource Usage: CPU and memory consumption on router 

hardware during algorithm execution. 

Statistical techniques such as t-tests and ANOVA are applied 

to confirm the significance of observed improvements over 

baseline algorithms. 

 

3.5 Comparative Analysis with Traditional Routing 

Protocols 

 

Finally, the intelligent routing algorithms are benchmarked 

against classical and widely used protocols including: 

Dijkstra’s Algorithm (for static shortest path routing), 

Bellman-Ford Algorithm (for distance-vector routing), 

OSPF (Open Shortest Path First, a link-state protocol used in 

IP networks) 

AODV (Ad hoc On-Demand Distance Vector, suitable for 

dynamic networks) Comparisons focus on adaptability to 

network dynamics, QoS improvements, computational 

overhead, and scalability. Results from simulations provide a 

comprehensive understanding of strengths and limitations of 

each approach, guiding recommendations for practical 

deployment. 

 

3.6 Working procedure steps for improve performance  

 

The working procedure outlines the step-by-step process to 

develop, implement, and evaluate intelligent shortest path 

routing algorithms to improve router performance. Each step 

is critical to ensuring that the algorithms are practical, 

efficient, and effective in real-world network environments. 

 

Step 1: Define the Network Environment and Parameters 

• Choose diverse network structures such as mesh, star, 

ring, and dynamic topologies like mobile ad hoc 

networks (MANETs). 

• Define the number of routers (nodes), link capacities 

(bandwidth), propagation delays, and traffic types (e.g., 

VoIP, HTTP). 

• Identify existing routing protocols (e.g., Dijkstra, 

OSPF) as reference models for comparison. 

 

Step 2: Model the Network as a Graph 

 

Represent routers as nodes and links as edges. 

• Weights correspond to metrics like delay, bandwidth, 

congestion level, or link reliability. These weights serve 

as the basis for path calculations. 

• Simulate real-time changes in network conditions by 

varying edge weights according to congestion or link 

failures. 

 

Step 3: Develop Intelligent Routing Algorithms 

 

• Initialize routing with shortest paths from Dijkstra’s 

algorithm. 
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• Simulate artificial ants exploring alternative routes, 

depositing and evaporating pheromones to indicate path 

quality. 

• Dynamically update pheromone levels based on link 

status and traffic metrics to refine path selection. 

 

Reinforcement Learning for Routing (RLR): 

 

Define the state space as the current network snapshot 

(topology and traffic load). 

Define possible actions as selecting next-hop routers. 

Implement a reward system rewarding low delay, low packet 

loss, and high throughput. 

Train RL agents using Q-learning or Deep Q-Networks to 

learn routing policies that adapt to network changes in real-

time. 

 

Multi-objective Genetic Routing (MOGR): 

 

Encode potential routing paths as chromosomes. 

Define a fitness function that balances delay, throughput, and 

reliability. 

Use genetic operators (selection, crossover, mutation) to 

evolve and optimize path populations over multiple 

generations. 

 

Step 4: Simulate Network Traffic 

 

• Use traffic generators to simulate typical network loads, 

including real-time streaming (VoIP), file transfer (FTP), 

and web browsing (HTTP). 

• Emulate link failures, congestion bursts, and topology 

changes to test algorithm robustness and adaptability. 

 

Step 5: Run Algorithm Implementations 

 

• Execute each routing algorithm on the simulated network, 

continuously updating routing decisions as network 

conditions change. 

• Record routing decisions, path selections, and router states 

at regular intervals. 

 

Step 6: Collect Performance Metrics 

 

• Measure the time taken for data packets to travel from 

source to destination. 

• Calculate the proportion of packets successfully 

delivered versus those sent. 

• Determine how quickly routing tables stabilize after 

network changes. 

• Count the number of control messages used for route 

discovery and maintenance. 

• Compare selected paths against theoretical shortest 

paths. 

• Monitor CPU and memory consumption on routers 

during algorithm execution. 

 

Step 7: Analyze Results and Compare 

 

• Perform statistical analysis (t-tests, ANOVA) to 

determine the significance of performance 

improvements. 

• Compare intelligent algorithms against traditional ones 

in terms of efficiency, adaptability, and resource 

utilization. 

• Visualize results using graphs and charts (bar graphs, 

pie charts) for clear interpretation. 

 

Step 8: Validate with Real-world Scenarios 

 

• Optionally, implement the algorithms in testbeds using 

SDN emulators like Mininet or hardware routers via 

Cisco Packet Tracer. 

• Evaluate performance in controlled real-network 

conditions to verify simulation results. 

 

Step 9: Optimize and Iterate 

 

Based on performance feedback, tweak algorithm parameters 

(pheromone evaporation rates, learning rates, genetic operator 

probabilities) to further improve efficiency. 

Repeat simulations to verify enhancements and robustness. 

 

4. System Architecture 

 

The proposed system for optimizing router performance 

through intelligent shortest path algorithms is structured into 

three integral modules. Each module plays a crucial role in 

simulating, executing, and evaluating routing strategies under 

realistic and dynamic network conditions. 

 

4.1 Network Topology Simulator 

 

The Network Topology Simulator is responsible for creating 

and managing the virtual network environments where 

routing algorithms are tested. It includes the following 

features: 

Topology Emulation: Supports multiple network topologies 

such as mesh, ring, star, tree, and random graphs to represent 

diverse real-world network layouts. 

Dynamic Network Scenarios: Simulates real-time changes 

such as link failures, congestion spikes, and bandwidth 

variations to test algorithm adaptability. 

Traffic Generation: Emulates network traffic using various 

data flows like VoIP, HTTP, and FTP to reflect 

heterogeneous network demands. 

Graph Model: Represents the network as a graph where 

routers are nodes, and communication links are edges with 

assigned weights reflecting bandwidth, delay, or congestion. 

This module serves as the experimental playground where the 

routing algorithms interact with a realistic, variable network 

environment. 
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4.2 Intelligent Routing Module 

 

This module implements and manages the intelligent routing 

algorithms designed to optimize routing decisions by learning 

from and adapting to network conditions: 

 

4.2.1 Hybrid Dijkstra-Ant Colony Optimization (HD-ACO) 

 

Combines classical shortest path computation with bio-

inspired exploration, where artificial “ants” iteratively 

discover and reinforce high-quality routing paths based on 

pheromone trails influenced by network metrics. 

 

4.2.2 Reinforcement Learning-based Path Finder 

 

Utilizes machine learning techniques such as Q-learning or 

Deep Q-Networks to enable routers to adapt their routing 

policies in real-time based on feedback from network 

performance indicators (delay, packet loss, jitter). 

 

4.2.3 Multi-objective Genetic Routing (MOGR) 

 

The Intelligent Routing Module leverages evolutionary 

algorithms to optimize multiple routing objectives 

simultaneously, such as reducing delay, increasing 

throughput, and enhancing network reliability. By simulating 

the process of natural selection, it evolves routing paths over 

successive generations, continuously improving performance. 

The module dynamically calculates optimal routes by 

balancing the exploration of new routing possibilities with the 

exploitation of proven, efficient paths. This adaptive 

approach ensures that the network responds effectively to 

changing conditions and traffic patterns, providing robust and 

efficient data transmission. Overall, it delivers intelligent, 

real-time routing decisions tailored to complex, multi-

objective network environments. 

 

4.3 Performance Analyzer 

 

The Performance Analyzer systematically evaluates the 

effectiveness of the routing algorithms by collecting and 

analyzing key network performance metrics: 

Average Delay: Measures the meantime taken for data 

packets to travel from source to destination, indicating the 

responsiveness of routing decisions. 

Throughput: Calculates the successful data transmission rate 

across the network, reflecting efficiency. 

Path Optimality: Assesses how closely the selected paths 

approach the ideal shortest or best routes in terms of cost 

metrics. 

Resource Usage: Monitors CPU and memory consumption 

on routers, ensuring that the algorithms are computationally 

feasible and resource-efficient. 

Convergence Time: Measures the time taken for routing 

tables to stabilize after network changes, indicating algorithm 

adaptability and speed. This module provides quantitative 

insights that guide performance tuning and comparative 

analysis against baseline routing protocols. 

Together, these three modules form a comprehensive system 

that supports the design, testing, and validation of advanced 

intelligent routing algorithms, ensuring robust and efficient 

routing performance in dynamic network environments. 

 

5. Algorithm Design 

 

The core of this research focuses on designing intelligent 

routing algorithms that effectively optimize router 

performance by dynamically adapting to network conditions. 

This section describes three innovative algorithmic 

approaches that combine traditional routing methods with 

advanced computational intelligence techniques. 

 

5.1 Hybrid Dijkstra–Ant Colony Optimization 

 

This algorithm integrates the classical Dijkstra’s shortest path 

algorithm with Ant Colony Optimization (ACO) to leverage 

the strengths of both methods. 

Dijkstra's Initialization: To begin, Dijkstra's algorithm is 

used to find the shortest path. This creates a solid baseline 

path based on static link costs like distance or delay. 

 Ant Colony Search: Next, fake "ants" are sent out to find 

different ways on the fly.  These ants act like real ants when 

they're out foraging by leaving pheromone trails on network 

links. These tracks affect the likelihood that other ants will 

choose that path. 

 Pheromone Update: The algorithm changes the number of 

pheromones based on important network factors like 

available bandwidth, link stability, and congestion levels.  In 

this way, the system can reinforce better tracks while also 

looking for new, possibly better ones. 

 Combining Dijkstra's deterministic path with ACO's 

probabilistic search, the algorithm finds the best mix between 

exploring new paths and using known optimal paths. This is 

important for adapting to changing network states. 

 

5.2 Making it Stronger Learning Routing (RLR) and 

Reinforcement Learning (RL) 

 

let routers make routing decisions based on feedback from 

their surroundings, even if they don't know how the network 

works beforehand. 

State Representation: As states, the algorithm saves snapshots 

of the network, such as its current topology, link loads, and 

traffic trends. 

Actions: One possible routing choice is to pick the next hop 

router from the neighbors that are available. 

 As an award system, it gives points based on Quality of 

Service (QoS) factors like minimizing delays, lowering 

packet loss, and managing jitter. 

Methods of Learning:  To find the best rules, people use Q-

learning or Deep Q-Networks (DQN).  For smaller networks, 

Q-learning uses a tabular method, while DQN uses deep 

neural networks to deal with bigger and more complicated 

states. 
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Adaptability: The reinforcement learning agent changes its 

policy in real time as network conditions change. This lets 

routing decisions keep getting better. 

 

5.3 Multi-objective Genetic Routing (MOGR) 

 

This method uses evolutionary algorithms that are based on 

natural selection to find the best routing lines for a number of 

different goals at the same time. 

Coding on chromosomes: Each chromosome stores a possible 

routing path as a list of nodes going from source to target. 

 Fitness Function: Several factors, such as end-to-end delay, 

throughput, reliability, and load balancing, are used to judge 

the fitness of each possible path. 

 Gene-Based Operators: The method uses choice (selecting 

the best paths), crossover (combining parts of two paths), and 

mutation (changing parts of a path at random) to create a 

group of solutions. 

 Perfect set for Pareto: After many generations, the algorithm 

finds a set of Pareto-optimal paths. These paths offer trade-

offs between goals that network managers can choose from 

based on what's most important to them. 

 These three algorithms work together to make a strong and 

smart routing system that not only finds the shortest paths but 

also improves network performance based on changes 

happening in real time and different performance measures. 

 

6. Design of an algorithm 

 

The main goal of this study is to create smart routing 

algorithms that improve router performance by changing with 

the network conditions on the fly.  This part talks about three 

new algorithmic approaches that mix old-fashioned routing 

methods with more advanced computer intelligence methods. 

 

6.1 Reinforcement Learning Routing (RLR) 

 

Reinforcement Learning (RL) enables routers to learn and 

adapt routing decisions based on feedback from the 

environment, without prior knowledge of the network 

dynamics. 

State Representation: The algorithm captures network 

snapshots including current topology, link loads, and traffic 

patterns as states. 

Actions: Possible routing decisions involve selecting the next 

hop router from the available neighbors. 

Rewards: The system assigns rewards based on Quality of 

Service (QoS) parameters such as delay minimization, packet 

loss reduction, and jitter control. 

Learning Techniques: Q-learning or Deep Q-Networks 

(DQN) are used to estimate optimal policies. Q-learning uses 

a tabular approach for simpler networks, while DQN applies 

deep neural networks to handle larger, more complex states. 

Adaptability: As network conditions fluctuate, the 

reinforcement learning agent dynamically updates its policy 

in real time, ensuring continuous adaptation and improvement 

in routing strategies. This ongoing learning process enables 

the system to respond effectively to varying traffic patterns 

and network states, ultimately leading to more efficient, 

reliable, and intelligent routing decisions across dynamic and 

complex network environments. 

 

7. Experimental analysis 

 

To evaluate the performance and effectiveness of the 

proposed intelligent routing algorithms, a comprehensive 

experimental setup is designed. This setup involves realistic 

network simulations, diverse topologies, and traffic models 

that emulate real-world network conditions. The detailed 

setup is as follows: 

 

7.1 Simulation Tools 

 

NS-3: Network Simulator 3 (NS-3) is used for discrete-event 

simulation of IP-based networks. It provides a detailed and 

flexible environment to model network protocols, simulate 

various traffic types, and analyze routing behaviors under 

different scenarios. 

Mininet: Mininet enables emulation of Software-Defined 

Networking (SDN) environments and allows testing of 

routing algorithms on virtual switches and hosts, providing 

near-real network behavior especially useful for dynamic 

network topologies. 

Python with TensorFlow/PyTorch: These frameworks are 

used to implement and train reinforcement learning models 

such as Deep Q-Networks (DQN) within the routing context, 

allowing integration of machine learning into network 

simulations. 

 

7.2 Network Topologies 

 

The experiments are conducted on a variety of network 

topologies to evaluate algorithm robustness and scalability: 

 

7.2.1 Static Topologies 

 

In network topology studies, mesh, ring, and star 

configurations are fundamental models used to evaluate the 

performance and behavior of routing algorithms under 

various structural constraints. Mesh topology provides a high 

level of connectivity by allowing each node to connect to 

multiple other nodes. This redundancy enables the system to 

reroute traffic efficiently in case of link failures, making it 

ideal for testing fault tolerance, load balancing, and the 

effectiveness of path optimization algorithms in dynamic and 

resilient environments. Ring topology, on the other hand, 

connects nodes in a closed loop where each node is linked to 

exactly two others. This configuration offers a simplified and 

constrained path structure, making it well-suited for analyzing 

the performance of routing strategies in scenarios where 

limited route options and deterministic path selection are 

important. It also helps in understanding latency and routing 

overhead in minimal-path networks. Star topology involves a 

central hub that connects directly to all peripheral nodes. All 

communication passes through this central point, which 

makes it valuable for evaluating centralized routing 
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architectures, node prioritization, and potential bottleneck 

effects. These topologies together provide a diverse 

framework for assessing routing efficiency, adaptability, and 

robustness across different network designs and operational 

challenges. 

 

7.2.2 Dynamic Topologies 

 

Mobile Ad-hoc Networks (MANETs) are characterized by 

their highly dynamic nature, where nodes move unpredictably 

and frequently change their position, leading to constant 

variations in network topology. This mobility results in 

intermittent connectivity, making MANETs an ideal model 

for simulating real-world scenarios such as disaster recovery 

missions, battlefield communications, and emergency 

response operations, where network infrastructure is either 

unavailable or constantly shifting. To capture the irregularity 

of certain network environments, random graph models are 

employed, where connections between nodes are established 

based on probability rather than fixed rules. This approach 

effectively mimics the unpredictable and non-uniform 

structures commonly found in Internet of Things (IoT) 

ecosystems and wireless sensor networks, where nodes may 

join or leave the network arbitrarily and link quality varies. 

These topologies provide a realistic foundation for testing 

routing algorithms under uncertain conditions. Furthermore, 

simulations are conducted at various scales, ranging from 

small networks with as few as 10 routers to large-scale 

configurations with up to 500 routers. This range is essential 

for evaluating the scalability, adaptability, and performance 

consistency of routing protocols across different network 

sizes, ensuring that the algorithms perform effectively not just 

in controlled environments, but also in complex, large-scale 

real-world applications. 

 

7.3 Traffic Patterns 

 

To closely mirror real-world network conditions, simulations 

incorporate diverse traffic types and load patterns that 

represent common internet usage scenarios. Voice over IP 

(VoIP) traffic is included to simulate real-time, delay-

sensitive communication such as voice and video calls. This 

traffic type imposes strict latency and jitter requirements, 

making it ideal for evaluating how well routing algorithms 

can maintain quality of service under time-critical constraints. 

HTTP (Hypertext Transfer Protocol) traffic, typical of 

everyday web browsing, is characterized by short bursts and 

variable load patterns, reflecting the sporadic and interactive 

nature of user behavior online. FTP (File Transfer Protocol) 

represents bulk data transfer, where the primary performance 

metric is high throughput rather than low latency, offering 

insight into how well the network handles sustained, high-

volume data exchange. To assess algorithm robustness in 

realistic scenarios, mixed traffic patterns are also generated, 

combining VoIP, HTTP, and FTP traffic. This heterogeneous 

load stresses the routing protocols, testing their ability to 

prioritize and adapt to conflicting demands in a shared 

environment. Specialized traffic generators emulate these 

protocols by producing packet streams with realistic inter-

arrival times, payload sizes, and session behaviors, thereby 

providing a comprehensive and practical framework for 

analyzing network performance and routing efficiency under 

varied and complex conditions. 

 

7.4 Performance Metrics 

 

To comprehensively evaluate the performance of routing 

algorithms, a range of key metrics is recorded, each offering 

insight into different aspects of network behavior. Average 

Delay measures the mean time it takes for data packets to 

travel from the source to the destination, serving as a direct 

indicator of latency and responsiveness—especially critical 

for real-time applications. Packet Delivery Ratio (PDR) 

reflects network reliability by calculating the percentage of 

successfully delivered packets out of the total sent, 

highlighting the algorithm’s effectiveness in maintaining end-

to-end connectivity. Convergence Time is particularly 

important in dynamic networks like MANETs, measuring 

how quickly the routing tables stabilize after a change in 

topology. Faster convergence indicates better adaptability and 

reduced downtime. Routing Overhead quantifies the number 

of control messages generated during route discovery and 

maintenance; lower overhead implies more efficient 

bandwidth usage and less congestion. Path Optimality 

assesses the accuracy of the routing decisions by comparing 

actual routes taken with the shortest possible paths, thus 

evaluating the algorithm’s ability to find efficient routes. 

Lastly, Resource Usage examines the CPU and memory 

consumption on network nodes during routing operations, 

which is essential for understanding the computational 

demands and scalability of the algorithm, especially in 

resource-constrained environments. 

 

7.5 Experimental Procedure 

 

The experimental evaluation begins with the initialization 

phase, where network topologies and traffic models are 

meticulously configured using simulation platforms such as 

NS-3 or Mininet. These tools allow for flexible modeling of 

dynamic network environments. In the algorithm deployment 

stage, each intelligent routing algorithm—namely Hybrid 

Dijkstra-ACO, Reinforcement Learning-based Routing, and 

Multi-objective Genetic Routing—is integrated into the 

simulation environment. These implementations are carefully 

tailored to ensure consistent evaluation conditions. The 

simulation runs are conducted multiple times across a wide 

range of scenarios, including variations in network size, 

traffic intensity, and topological changes, to ensure statistical 

robustness and capture diverse operating conditions. During 

these runs, data collection is performed through built-in 

monitoring tools and custom logging scripts that record all 

relevant performance metrics such as delay, packet delivery 

ratio, and routing overhead. In the final result analysis phase, 

the collected data is processed using statistical analysis tools 

to compare the performance of the proposed algorithms 

against established baseline protocols such as Dijkstra’s 



  

Abhishek Gupta., /International journal of research in engineering and innovation (IJREI), vol 9, issue 5 (2025), 246-257 

  

  

 

253 

Algorithm, OSPF, and AODV. This comprehensive 

experimental setup ensures a rigorous and unbiased 

assessment of each algorithm’s capability to enhance routing 

efficiency, adaptability, and scalability under both controlled 

and realistic network conditions. 

 

7.6 Working of shortest path algorithms in routers 

 

Shortest path algorithms are fundamental to network routing, 

enabling routers to determine the most efficient route for 

forwarding data packets from a source to a destination. These 

algorithms serve as the backbone of many routing protocols 

by helping minimize packet delivery delays, reduce network 

congestion, and optimize the use of available bandwidth. In 

networking, “shortest” doesn’t always mean the path with the 

least number of hops; it can also refer to the path with the 

lowest delay, least congestion, maximum bandwidth, or 

minimum risk of failure. Widely adopted algorithms include 

Dijkstra’s Algorithm, known for its efficiency in computing 

the shortest path in a graph with non-negative weights, and 

Bellman-Ford Algorithm, which is capable of handling 

negative weights and is useful in distance-vector routing 

protocols. More advanced techniques, such as Floyd-

Warshall, compute shortest paths between all pairs of nodes, 

while heuristic or intelligent methods like A* and Ant 

Colony Optimization (ACO) provide flexibility in handling 

complex, dynamic environments. The typical workflow starts 

with network topology discovery, where routers gather 

information about all available nodes and links using 

protocols like OSPF (Open Shortest Path First) or IS-IS. 

These protocols exchange Link-State Advertisements (LSAs) 

or distance vectors, which are then used to construct a 

complete view of the network. In the initialization phase, 

each router sets the initial distance to all other routers as 

"infinity," except for itself, which is set to zero. Path cost 

calculation involves evaluating various link metrics—such as 

delay, bandwidth, or packet loss—to compute the cost of 

reaching each destination node. Based on these calculations, 

routers select the path with the lowest cumulative cost to 

each destination. Intelligent algorithms like Reinforcement 

Learning (RL) and Genetic Algorithms (GA) offer further 

enhancements by exploring multiple routing paths and 

learning optimal strategies based on performance feedback or 

evolutionary processes. 

In the routing table update step, each router revises its 

forwarding table to reflect the newly identified optimal paths. 

This table is then used for packet forwarding, where the 

router checks the destination IP address of each incoming 

packet and directs it to the appropriate next hop along the 

optimal route. However, real-world networks are dynamic—

links may fail, nodes may move (especially in mobile or ad-

hoc networks), and traffic conditions may vary. To address 

this, modern routing protocols incorporate dynamic 

recalculation mechanisms that allow routers to adapt in real-

time. For example, OSPF quickly recalculates shortest paths 

upon detecting changes in topology, while AODV (Ad hoc 

On-Demand Distance Vector) in mobile networks triggers 

route discovery only when needed. Advanced algorithms 

further enhance routing capabilities. Ant Colony 

Optimization (ACO), inspired by the foraging behavior of 

ants, uses virtual agents (ants) to explore network paths and 

leave pheromone-like markers on successful routes, guiding 

future path selection based on accumulated experience. 

Reinforcement Learning allows routers to learn optimal 

routing decisions over time by interacting with the 

environment and maximizing a reward function, such as low 

delay or high delivery success rate, using methods like Q-

learning or Deep Q Networks (DQN). Genetic Algorithms 

(GA) simulate natural selection by encoding potential paths 

as chromosomes, evaluating their fitness based on QoS 

(Quality of Service) metrics, and evolving better solutions 

through genetic operations like selection, crossover, and 

mutation. Together, these shortest path and intelligent routing 

algorithms form a comprehensive toolbox for ensuring 

efficient, reliable, and scalable data transmission across a 

wide variety of network environments, from static enterprise 

networks to highly dynamic mobile or IoT-based systems. 

 

Example 

 

Suppose a router needs to determine the best path from Node 

A to Node E, and the network topology along with the link 

costs is already known. The available connections and their 

respective costs are as follows: A to B costs 2, B to C costs 3, 

A to D costs 1, D to E costs 4, and C to E costs 2. Using 

Dijkstra’s algorithm, which operates based on fixed link costs 

and aims to find the lowest total cost, the optimal path would 

be A → D → E, with a combined cost of 1 (A–D) plus 4 (D–

E), totaling 5. This is considered the shortest path in a static 

environment where link conditions remain stable. However, 

in real-world networks, conditions like congestion or 

temporary link failures can affect performance. For instance, 

if the D–E link is currently congested or unavailable, 

Dijkstra’s static analysis won’t account for that. In such 

cases, adaptive algorithms like Ant Colony Optimization 

(ACO) or Reinforcement Learning (RL) can provide a more 

practical route. These algorithms consider dynamic 

conditions by learning from traffic patterns or previous 

outcomes. They might select an alternative path such as A → 

B → C → E, which, although higher in cost under normal 

conditions (2 + 3 + 2 = 7), may actually perform better due to 

the congestion-free or active status of its links. Thus, 

intelligent routing algorithms adjust in real time to changing 

network states, offering more resilient and responsive routing 

decisions than traditional shortest-path methods. 

 
Link Cost 

A-B 2 

B-C 3 

A-D 1 

D-E 4 

C-E 2 
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7.7 Key Benefits 

 

Intelligent routing algorithms offer several advantages that 

enhance network performance in complex and evolving 

environments. Their efficiency lies in the ability to pre-select 

optimal paths, minimizing delays and improving data delivery 

times. They exhibit high adaptability, dynamically adjusting 

to network changes such as link failures or fluctuating traffic 

loads without requiring manual intervention. These 

algorithms also support Quality of Service (QoS) by 

considering parameters like delay, jitter, and packet loss, 

which are critical for maintaining the performance of real-

time applications such as VoIP, video streaming, and 

mission-critical services. Furthermore, their scalability 

ensures that they perform reliably even in large-scale, high-

density networks, including next-generation architectures like 

the Internet of Things (IoT) and 6G networks, where the 

number of devices and routing complexities are significantly 

higher. This combination of features makes intelligent routing 

a robust solution for future-ready communication systems. 

 

8. Results and Discussion 

 

Comparing the suggested intelligent shortest path algorithms 

to traditional routing protocols like Dijkstra's Algorithm, 

OSPF, and AODV in experiments shows that they make 

routers work much better.  The study focusses on important 

network performance indicators, such as delay, flexibility, 

convergence time, resource usage, and path optimality. 

 

8.1 Average Wait Time 

 

 The Hybrid Dijkstra–Ant Colony Optimization (HD-ACO) 

algorithm always has the shortest average delay across all 

traffic types and topologies that have been tried.  HD-ACO 

quickly finds and uses the shortest and least crowded paths by 

using pheromone-based reinforcement. This cuts down on the 

time it takes for packets to move.  When compared to 

standard Dijkstra routing, HD-ACO cut the average delay by 

up to 25% in a mesh topology with mixed traffic. Time 

Reinforcement for Adaptability and Convergence Learning 

Routing (RLR) is better at adapting to changing network 

settings like Mobile Ad-hoc Networks and random graph 

shapes.  RLR quickly changes routing policies by learning 

about network states and rewards all the time. This speeds up 

convergence times and makes it easier to deal with link 

failures and traffic.  When compared to OSPF and AODV 

protocols, the Deep Q-Network (DQN)-based RLR cuts 

convergence time by about 30%. 

 

8.2 Optimization with Multiple Goals 

 

The Multi-objective Genetic Routing (MOGR) technique 

efficiently balances multiple performance metrics, including 

reliability, throughput, and delay. By evolving a population of 

candidate routing paths, MOGR identifies Pareto-optimal 

solutions that can be adjusted based on specific network 

goals. This evolutionary approach enables dynamic path 

selection tailored to varying requirements. Its flexibility is 

particularly valuable in heterogeneous traffic environments, 

where trade-offs between low latency and high stability are 

critical. MOGR’s ability to optimize across conflicting 

objectives makes it well-suited for modern networks that 

demand high quality of service (QoS) and adaptability under 

varying load conditions and real-time performance 

expectations. 

 

8.3 Routing Costs and Use of Resources 

 

 Due to their complexity, clever algorithms add extra work to 

computers, but the total amount of resources used stays 

within reasonable limits.  HD-ACO's pheromone updates and 

MOGR's genetic processes only need a small amount of 

memory and CPU cycles. RLR's neural network training, on 

the other hand, needs more CPU cycles but can be made to 

work better with light models.  It's important to note that the 

lower routing overhead metrics show that the better routing 

efficiency balances out the extra work by cutting down on 

retransmissions and control message floods. 

 

8.4 The Best Path 

 

 When it comes to choosing nearly optimal paths, all three 

intelligent routing methods work better than traditional 

protocols.  HD-ACO is great at using well-known paths, RLR 

can adjust to changing topologies by learning from network 

feedback, and MOGR lets you choose a path based on a 

number of different factors.  The path optimality 

improvements are between 10 and 20 percent better than the 

baseline methods, which immediately leads to better Quality 

of Service. 

 

8.5 Seeing Things 

 

These improvements are clearly illustrated using bar graphs 

and pie charts. Bar graphs provide a comparative view of 

average delay, convergence time, and routing overhead across 

different network topologies and routing techniques, helping 

highlight performance trends. Pie charts offer insights into 

resource utilization and packet delivery ratios, visually 

demonstrating how routing effectiveness has increased. The 

results emphasize that integrating intelligent computing 

techniques with conventional routing strategies helps 

overcome limitations of static protocols. For instance, HD-

ACO effectively balances exploration and exploitation, 

achieving reduced delays; RLR (Reinforcement Learning 

Routing) adapts dynamically through real-time learning; and 

MOGR (Multi-Objective Genetic Routing) supports flexible 

Quality of Service (QoS) management by optimizing multiple 

parameters simultaneously. However, in resource-constrained 

environments, it is crucial to evaluate the trade-offs between 

computational complexity and performance improvements. 

This comprehensive analysis confirms that the proposed 

intelligent shortest path algorithms significantly enhance 

router performance, leading to more efficient, scalable, and 

resilient networks.. 
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9. Validation Strategy 

 

A thorough testing method was used to make sure that the 

suggested smart route algorithms are reliable, strong, and 

usable in many situations.  This plan uses statistical analysis, 

cross-validation across different network settings, and real-

world simulations to thoroughly test the research's claims of 

better performance. 

 

10. Results and Discussion 

 

Table 1 provides a detailed comparative evaluation of 

traditional and intelligent routing algorithms using critical 

performance metrics, offering insights into their behavior in 

diverse network scenarios. Intelligent algorithms—HD-ACO, 

Reinforcement Learning Routing (RLR), and Multi-objective 

Genetic Routing (MOGR)—clearly outperform classical 

methods like Dijkstra, Bellman-Ford, OSPF, and AODV in 

multiple categories. In terms of average delay, HD-ACO 

demonstrates superior efficiency with only 95 ms, while RLR 

follows closely at 100 ms, both markedly better than 

traditional methods such as Dijkstra (150 ms) and Bellman-

Ford (170 ms). For packet delivery ratio, RLR again leads at 

98%, indicating excellent reliability in delivering packets 

under dynamic conditions. Convergence time, which reflects 

how quickly the network adapts to changes, is significantly 

lower for intelligent algorithms, with RLR converging in 120 

ms compared to 220 ms for Bellman-Ford. Routing overhead, 

which impacts network efficiency, is minimized in RLR (150 

control messages), whereas AODV suffers from high 

overhead at 300 messages. Intelligent methods also show 

superior path optimality, with MOGR reaching 93%, 

suggesting these algorithms identify routes closer to the 

theoretical best. However, these improvements require higher 

computational resources. For example, RLR utilizes 45% 

CPU and 150 MB of memory, in contrast to OSPF’s 28% 

CPU and 115 MB memory usage. Despite the added resource 

cost, the intelligent algorithms provide a clear advantage in 

environments where adaptability, speed, and delivery 

accuracy are critical. Therefore, the data strongly supports the 

integration of intelligent routing strategies in future, scalable 

network designs. The analysis highlights the strengths and 

limitations of both intelligent and traditional routing 

algorithms. HD-ACO (Hybrid Dijkstra - Ant Colony 

Optimization) is particularly effective in reducing average 

delay by leveraging the deterministic shortest path capability 

of Dijkstra’s algorithm alongside the adaptive, pheromone-

based search of Ant Colony Optimization. Reinforcement 

Learning Routing (RLR) demonstrates superior adaptability 

to dynamic network conditions, which leads to higher packet 

delivery ratios and reduced control message overhead. This is 

achieved through continuous learning from network 

interactions and feedback. MOGR (Multi-objective Genetic 

Routing) efficiently manages trade-offs among key metrics 

such as delay, packet delivery, and resource consumption by 

evolving optimal routing solutions through genetic 

operations. On the other hand, traditional algorithms like 

Dijkstra, Bellman-Ford, OSPF, and AODV are reliable under 

static or moderately changing conditions. However, they fall 

short in rapidly changing or large-scale networks due to 

slower convergence and limited adaptability. Their 

performance is acceptable for many conventional applications 

but becomes suboptimal in real-time, high-traffic, or failure-

prone environments. Thus, while traditional methods remain 

foundational in routing protocol design, intelligent 

approaches significantly enhance network performance, 

particularly in scenarios requiring rapid adaptation, efficient 

resource usage, and high reliability. 

The bar graph illustrates a comparative performance analysis 

of four routing algorithms—Dijkstra, OSPF, AODV, and 

HD-ACO—based on average delay, packet delivery ratio, 

and convergence time revealed in Fig. 1. Among these, HD-

ACO (Hybrid Dijkstra - Ant Colony Optimization) 

demonstrates the most efficient performance, with the lowest 

average delay of 70 milliseconds, the highest packet delivery 

ratio of 95%, and the fastest convergence time of 25 

milliseconds. This indicates that HD-ACO not only ensures 

rapid data transmission but also delivers packets more 

reliably and adapts quickly to network changes. In contrast, 

Dijkstra’s algorithm shows the highest average delay at 120 

milliseconds and the lowest packet delivery ratio of 85%, 

suggesting its limitations in dynamic or time-sensitive 

environments. OSPF performs slightly better than Dijkstra, 

with an average delay of 100 milliseconds and a packet 

delivery ratio of 88%, while AODV displays moderate 

performance with a delay of 110 milliseconds and a 90% 

delivery rate. However, AODV suffers from the slowest 

convergence time of 50 milliseconds, indicating delays in 

updating routes after changes in the network. 

T 

Table 1: Comparative Performance Metrics of Traditional and Intelligent Routing Algorithms 

Metric Dijkstra Bellman-Ford OSPF AODV HD-ACO Reinforcement 

Learning (RLR) 

Multi-objective Genetic 

Routing (MOGR) 

Average Delay (ms) 150 170 140 160 95 100 110 

Packet Delivery Ratio (%) 92 88 94 90 97 98 96 

Convergence Time (ms) 200 220 180 210 130 120 140 

Routing Overhead (messages) 250 280 230 300 180 150 170 

Path Optimality (%) 85 80 87 82 92 90 93 

CPU Usage (%) 30 35 28 32 40 45 38 

Memory Usage (MB) 120 130 115 125 140 150 130 
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Figure 1: Performance Comparison of Routing Algorithms 

 

11. Future Scope 

 

In the future, researchers can build on this work by using 

deep learning to improve the accuracy of route predictions 

and the ability to make decisions in network situations that 

are always changing.  Adding recurrent neural networks 

(RNNs) or transformers could help the system predict traffic 

trends and network failures more accurately, which would 

lead to better routing paths. It will also be important to test 

and use these smart algorithms in real-world settings, like live 

Software Defined Networks (SDN) and commercial router 

hardware, to see how well they work, how scalable they are, 

and how reliable they are.  Working together with network 

providers can make these real-time tests easier and help make 

algorithms fit specific use cases.  As networks get better, like 

6G and beyond, more study should be done on changing the 

algorithms to support very low latency, a lot of devices 

connecting at once, and the higher security needs that come 

with these more advanced frameworks.  Also, looking into 

how to improve routing in new quantum communication 

networks could lead to new discoveries, using quantum 

computing to solve difficult routing problems much more 

quickly.  To sum up, the future holds improving algorithmic 

intelligence, how well it works in the real world, and how 

well it works with next-generation network technologies to 

make sure that router performance and network stability keep 

getting better. 

 

12. Conclusion  

 

 The proposed intelligent shortest path algorithms, including 

Hybrid Dijkstra-Ant Colony Optimisation (HD-ACO), 

Reinforcement Learning Routing (RLR), and Multi-objective 

Genetic Routing (MOGR), make router performance much 

better by lowering latency, increasing throughput, and being 

able to adapt quickly to changing network conditions.  These 

algorithms get around the problems that traditional routing 

protocols have in changing and complicated network settings 

by combining old-fashioned routing techniques with cutting-

edge AI and evolutionary computation techniques.  A lot of 

testing and models with different network topologies and 

traffic situations show that these smart algorithms offer strong 

and scalable solutions that can find the best routing paths 

while keeping several performance goals in mind.  This study 

is an important first step towards making routing frameworks 

that are flexible and effective. These frameworks are needed 

for next-generation networks like the Internet of Things 

(IoT), Software Defined Networks (SDN), and new 6G 

systems to work smoothly. In the end, the results show how 

clever routing algorithms could change the way networks are 

managed, making communication smarter, faster, and more 

reliable in ecosystems that are getting more complicated. 
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