
International Journal of Research in Engineering and Innovation Vol-2, Issue-3 (2018), 274-279
__

International Journal of Research in Engineering and Innovation

(IJREI)
journal home page: http://www.ijrei.com

ISSN (Online): 2456-6934

Corresponding author: Anil Kumar Kapil 274

Email Id: anilkdk@gmail.com

An improved algorithm for query driven data allocation in distributed database

systems

Vinod Kumar1, Anil Kumar Kapil2

1Professor, Department of Computer Science, Gurukul Kangri University, Haridwar.
2Professor, Faculty of Mathematics and Computer Sciences, Motherhood University, roorkee, Uttarakhand

Abstract

A major component of the query execution cost is the data transfer cost. That is, the total cost involved in moving the data from the

sites where it is located to the site where the query is issued. Therefore, to reduce the query execution cost it is desirable to minimize

the data transfer cost. This can be possibly achieved by optimally allocating the database objects or fragments to the various sites of

the DDBMS. © 2018 ijrei.com. All rights reserved

Keywords: Data transfer, Distributed database system, Algorithm.

1. Introduction

Distributed database systems have been a phenomenal success

in terms of facilitating organization and processing of large

volume of data. Distributed relational database technology is

nearly two decades old and have developed the main idea of

maintaining consistency of distributed data and querying data.

In distributed database system, a query requires data to be

accessed from one or more sites. The cost of executing the

query depends on the location of the query as well as the data.

The data locality of a query determines the amount of data

transfer incurred in processing the query, the higher the data

locality the lower the data transfer costs. Thus, one is faced

with the data allocation problem, the aim of which is to

increase the data locality.

The query processing consists of decomposing the queries and

data localization. The data localization involves: identifying

the fragments accessed by the query and generating the query

operator tree. These generated query operator trees are further

processed by taking into account a given query execution

strategy and the information of the fragment size to generate a

fragment dependency graph.

The data allocation problem has been first studied in terms of

file allocation problem in a multi computer system, and later

on as a data allocation problem in distributed database system.

The file allocation problem does not take into consideration the

semantics of the processing being done on files, whereas it

must take into consideration the interdependencies among

accesses to multiple fragments by a query. The problem of file

allocation with respect to multiple files on a multiprocessor

system was first studied by Chu [6]. He presented a global

optimization model to minimize overall processing cost under

the constraints of response time and storage capacity with a

fixed number of copies of each file.

1.1 Literature Review

A file allocation problem in the environment of a distributed

database was analyzed in Ramamoorthy and Wah [12]. They

developed a heuristic approximation algorithm for a simple file

allocation problem as well as for the generalized file allocation

problem.

Ceri et al. [1] considered the problem of file allocation for

typical database applications with a simple model of

transaction execution taking into account the dependencies

between accesses to multiple fragments. The Knapsack

problem solution [2] and branch and bound techniques were

further adopted to solve the problem. Chang [5] developed a

theory of fragment allocation and designed a network flow

algorithm to solve the database allocation problem. In [13]

limited processing and network capacities are assumed,

transmission of the result of a query to the results site is not

http://www.ijrei.com/

Vinod Kumar et al / International journal of research in engineering and innovation (IJREI), vol 2, issue 3 (2018), 274-279

275

considered; only transmission between fragments are

considered, rendering the problem into cluster analysis

problem.

Ceri proposed a simple method that ignores replication at the

beginning and finds an optimal non–replicated solution. Then

replication is handled by applying greedy algorithm that tries

to improve the initial feasible solution [3, 4].

Cornell and Yu [7] proposed a strategy to integrate the

treatment of relation assignment and query strategy to optimize

performance of a distributed database system. Though they do

take into consideration the query execution strategy, the

solution, they came up with, is a complicated linear

programming solution. The main problem in their approach is

the lack of simplicity in both incorporation of the query

execution strategy and the solution procedure.

There have been many linear programming formulations

proposed for data allocation problem [11]. The main problem

with these approaches is the lack of modeling of the query

execution strategy. Lin et al. also developed a heuristic

algorithm for minimum overall data transfer cost, by

considering replicated allocation of fragments and both read

and update transactions [10]. The optimization heuristic

iterates between finding minimum cost query strategy and

minimum cost data allocation until local minimum for the

combined problem is found. A new class of query optimization

algorithms, known as iterative dynamic programming for

query optimization was suggested by Donald and Stocker [8].

If all of the data required by a retrieval request is located at the

requesting site then only local processing is needed. However,

if some data is not located at the requesting site, then data must

be accessed from and possibly processed at, other sites. A

typical user can access the complete database from any site, a

DDBMS processes and executes a user’s query by accessing

the data from multiple sites.

A major component of the query execution cost is the data

transfer cost. That is, the total cost involved in moving the data

from the sites where it is located to the site where the query is

issued. Therefore, to reduce the query execution cost it is

desirable to minimize the data transfer cost. This can be

possibly achieved by optimally allocating the database objects

or fragments to the various sites of the DDBMS. In the model

presented here, we do not consider replicated allocation of

fragments. The basic aspects of the problem are the same as

discussed in the previous chapter. However, in the solution

process ‘Move Small’ query execution strategy has been

adopted.

2. Nomenclature & Definitions

N

Number of fragments in the distributed

database system.

M Number of sites in the distributed database

system.

C Capacity of each site.

NSI Number of site involvement.

UDTC(,) A matrix of unit cost of data transfer

among the sites.

FRAG() An array storing the size of each fragment.

R(,) A data transfer relation size matrix.

FREQ() A matrix storing the access frequencies of

the queries at the given site.

Sc () An array storing site combinations.

site(Fi) Site of allocation of fragment Fi .

3. Assumptions

The present method is based on the following assumptions:

1. The number of sites is equal to the number of fragments.

2. The number of site involvement, is the greatest lower

bound of (n/c).

3. Replication of fragment is not allowed, that is the

allocation policy is static.

4. The sites are fully connected.

5. Each fragment is allocated to at least one site.

6. The number of fragments allocated to each site does not

exceed the maximum capacity of that site.

7. The inter site distance is unity.

4. Allocation Problem

Let there be a set of fragments F = {F0, F1, …………...., Fn-1 }

and a network consisting of sites S = { S0, S1, …, Sm-1 } on

which a set of applications Q={q0, q1, …, qg-1} are running. Let

the m sites be connected by communication network. A link

between two sites Si and Sj has a positive integer Ci,j associated

with it giving the cost for a unit data transferred from site Si to

site Sj. If the two sites are not directly connected by a

communication link then the cost for the unit data transferred

is given by the sum of the costs of the links of a chosen path

from site Si to Sj. Each query qg can be executed from any site

with a certain frequency. Let FREQi,j be the frequency with

which query qi is executed from site Sj . These frequencies of

executions of queries at all sites can be represented by a matrix

FREQ (,) of order mxn. A query may access one or more

fragments.

4.1 Query Execution Strategy

The optimal orderings of binary operations is based on a ‘Move

Small’ query execution strategy in distributed databases.

Which can be stated as:

 “If a binary operation involves two fragments located at two

different sites then ship the smaller fragment to the site of the

larger fragment”.

Here, the objective of the data allocation is (i) to minimize the

total data transfer cost to process all the queries by using

‘Move Small’ query execution strategy (ii) to maximize the

locality of the fragments for executing the queries (iii) to

incorporate the query execution strategy when a query needs

to access fragments from multiple sites and reduce the total

data transfer cost to process all the queries.

4.1.1 Evaluation of Query

Vinod Kumar et al / International journal of research in engineering and innovation (IJREI), vol 2, issue 3 (2018), 274-279

276

The construction of operator tree is an essential starting step

for the evaluation of a query. An operator tree is a tree in which

a leaf node is a relation stored in the database, and a nonleaf

node is an intermediate relation produced by a relational

algebraic operator. The sequence of operations is directed from

the leaves to the root, which represents the answer to the query.

Example 3.1: Let us consider the Example 3.1 again where a

query

“Find the names of employee other than J. Doe who worked on

the CAD/CAM project for either one or two years.” is to be

performed by accessing relations E{Eno, Ename, Title},

G{Eno, Jno, Resp, Dur} and J{Jno, Jname, Budget}.

It can be processed as given below:

SELECT Ename

FROM J,G,E

WHERE G.Eno=E.Eno

AND G.Jno=J.Jno

AND Ename<> “J.Doe”

AND J.name= “CAD/CAM”

AND (Dur=12 OR Dur =24);

The intermediate relations, generated after query restructuring

phase, are J’, G’, E’, G” and J”. In case of ‘Move Small’ query

execution strategy the corresponding fragment dependency

graph is generated by shipping small fragments to the larger

fragments site. The fragment dependency graph represents the

fragment-nodes (like Site(J), Site(G), etc) i.e. a site where the

fragments are located, and a query node Site(Q), where the

query is initiated (i.e. query site). A cost value is attached to

each edge of the graph corresponding to the amount of data

that may be transferred if the fragments corresponding to the

two nodes of the edge are located at different sites, or the

location of the fragment and querying site are different. For

example, in Figure 4.2, relations E and G are located at

different sites then it will incur Size (E’) data transfer cost to

process the join between relation E’ and G’ when using ‘Move

Small’ query execution strategy.

The inputs to the data allocation problem are

1. A set of n fragments F = {F0, F1, F2 , …., Fn-1 }.

2. A set of m sites S = {S0, S1, S2,.…., Sm-1 } and a matrix

UDTC = [Ci,j] depicting the cost of transporting a unit of

data from site Si to site Sj.

3. A set of g queries Q= {q0, q1, …, qg-1} and a matrix

FREQ= [FREQi,j] showing the frequency of qj initiated at

Si.

4. A matrix D giving the amount of data needed from a

fragment to be transported to the site of another fragment

is derived from the fragment dependency graph.

5. A matrix R = [R1, R2 ,…., Rn] where each element

corresponds to the size of a relation.

6. A vector V = [Vj] the limit on maximum number of

fragments that can be allocated at site Sj. This models the

storage constraint of each site in data allocation.

On the basis of the above inputs, we develop a cost model for

total data transfer incurred to process all the queries.

5. Cost functions of data transfer in DDBMS

The fragment dependency graph of every query processing

strategy models two types of data transfer cost. The first type

of cost is due to moving the data from the sites where the

fragment is located to the site where the query is initiated. The

second type of cost is due to moving the data from the site

where one fragment is located to the site where another

fragment is located. In this case, the size of the fragment

required by query site does not vary with the location of other

fragments as there is no dependency between the fragments

accessed by the query.

Let ri,j be defined as size of data of Fj needed to be transported

the site where query qi is initiated. Let the frequency of query

qi, initiated from site Sj, be FREQi,j in a unit time interval. And

let qi request for Fk and each request require ri,k amount of data

transfer from the site where Fk is located. So, the amount of

data, need to be transferred from where fragment Fk is

allocated to the site Si where the queries are initiated, is given

by matrix FREQ (,) of order mxk.. Then amount of data

transfer can be calculated as:

ADT = 




1

0

n

j

FREQi,j* ri,j (1)

The total data transfer cost

ADTC =








1

0

1

0

m

i

n

j

Csite(Fk),i * ADTi,j (2)

The communication cost Ci,j represents the communication in

terms of bytes transferred, between the site (Fk) and site(Fi).

The second type of data transfer cost incurred in the ‘Move

Small’ query processing strategy is transporting the fragment

from one site to the other site in order to perform the binary

operations (i.e., join, union etc). In this case, the amount of data

of a fragment required by a site varies with the allocation of

other fragments.

Let d λ,λ’ define the size of data from fragment Fλ that needs to

be transported to the site where Fλ’ is located so as to execute

some binary operation. Let the corresponding matrix, D(,), be

of order kxk. But this is dependent on the query that is to be

processed. Therefore, the query accesses both the fragment and

extract the information about how much data needs to be

transferred from site where one fragment is located to the site

where another fragment is located. This information is

extracted by the fragments dependency graph generator which

processes the query operator trees on fragments by applying a

query execution strategy and represents it in the fragment

dependency graph.

Let dγ
λ,λ’ be the size of data of Fλ need be transported to the site

Vinod Kumar et al / International journal of research in engineering and innovation (IJREI), vol 2, issue 3 (2018), 274-279

277

where Fλ’ is located to process qγ . And let the corresponding

matrix be Dγ. Then the amount of data that need be transported

from the site of Fλ to the site of Fλ’ is given by:

d λ,λ’ =  








1

0

1

0

(
k

j

n

i

FREQi,j) *dγ
λ,λ’ (3)

Let site (Fλ) denote the site where fragment Fλ is located. Then

the total transportation cost, t, is given by:

t=








1

0

1

0'

k k

 

Csite(Fλ), site(Fλ’) *dλ,λ’ +








1

0

1

0

m

i

k



Csite(Fλ), i*ADTi, λ (4)

where the first term gives the data transfer cost incurred to

process the binary operation between the fragments located at

different sites, and second term gives the data transfer cost

incurred to transfer the results of the binary operations of

fragments to the site where the query is initiated.

6. The proposed method and algorithm

In ‘Move Small’ query processing strategy, the smaller

fragment is moved to the site where larger fragment is located,

to process the binary operation of the query. In such a query

processing strategy the data transfer cost will play a major role

for incurring the query processing cost. The optimal fragment

allocation scheme can minimize this incurred query processing

cost. A fragment is allocated to a site in such a way that

extensive data transfer cost is avoided and the capacity of the

site suit to the execution environment of the system. The

proposed algorithm involves stepwise refinement of Data

Transfer Cost among the sites by applying the recursive

method, an array storing those site numbers on which the

fragments are allocated sc(), and an array FRAG(), containing

the sizes of their fragments during allocation process of m

fragments to n sites. The frequency of each query is stored in

an array FREQ(). These fragments are assigned to the sites in

such a way that the total data transfer cost remains minimum.

6.1 Formal Algorithm

FUNCTION:

Site_Comb (sc(), start, m , k , NSI)

Site_Perm (sc(), NSI, i)

Swap(sc, i ,j)

Cost_Cal (sc, NSI, i)

/* Main Program */

BEGIN

Read(n)

Read(m)

Read(c)

If (n% c !=0)

NSI = int (n/ c) +1

Else

NSI = int (n / c)

For i=1 to m Do

For j =1 to m Do

Begin

Read (UDTC(i,j))

end

For i=1 to n Do

begin

Read(FRAG(i))

end

For j=1 to m Do

begin

Read (FREQ (j))

end

For j=1 to m Do

begin

Read(R (j))

end

For i=1 to m Do

begin

sum=sum + FREQ(i)

end

END /* End of Main Program */

/* Function return the Site Combination */

Site_Comb (sc(), start, m, k, NSI)

BEGIN

If (k>NSI)

begin

Site_Perm(sc, NSI, 1)

Return

end

For i=start to m Do

begin

sc(k) = i

Site_Comb(sc, i+1, m, k+1, NSI)

end

END

Site_Perm (sc(), m, i) /*Function return the Site

Permutation */

BEGIN

If(i= m)

begin

Cost_Cal(sc, m, 1)

end

else

For j=1 to m Do

begin

Swap(sc, i, j)

Site_Perm(sc, m, i+1)

Swap(sc, i, j)

end

END /* End of Funtion*/

Swap (sc(), i, j) /* Swap Function */

BEGIN

t=sc(i)

Vinod Kumar et al / International journal of research in engineering and innovation (IJREI), vol 2, issue 3 (2018), 274-279

278

sc(i) = sc(j)

sc(j) = t

END

 Cost_Cal (sc(), m, i) /* Cost Calculation */

BEGIN

Total_cst=0

For i=1 to m Do

For j=i+1 to m Do

begin

adt = sum*FRAG (sc(i))

trnsf_cst = UDTC (sc(i), sc(j)) * adt

qry_site=sum – FREQ(sc(n))

qml = qry_site*r (m)

total_cst = total_cst+ trnsf_cst +qml

end

END.

6. Implementation of the algorithm

Consider a distributed database system with 3 fully connected

sites S1, S2, S3 and three relations E, G and J. Let the sizes of

the fragments be size (E’) =5, size (J’’)= 30, size (G’’) = 25.

First, we shall use the first level of the fragment dependency

graph i.e. edge from Site (j)  Site (Q) to solve the initial

allocation. As there is one query, we have the matrix R=[0, 0,

30] with each element corresponding to relations E’, G”, and

J’ respectively, and matrix FREQ = [3, 2, 1] with each element

corresponding to the sites S1, S2, S3 respectively. Let the cost

matrix for unit data transfer cost from one site to another site

be:

The matrix D(,) giving the amount of data needed from a

fragment to be transported to the site of another fragment, is

derived from the fragment dependency graph.

By applying the equation 3, we get the total amount of

data that must be transferred from the site where one

fragment is located to the site where another fragment is

located as:

The total data transfer cost given by equation 4.4 for the initial

allocation (S2, S1 ,S2) is (2*30 +2*150)+(2+1)*30 = 450. The

cost value in first parenthesis corresponds to the data transfer

cost incurred in transferring E’ to site (G) and G” to the site

(J). The second cost value corresponds to the data transfer

incurred in transferring the result J’ to the query site.

We now apply the recursive method to improve the initial

solution so as to reduce the total data transfer cost if possible,

Table 4.1 shows all feasible allocation schemes and the data

transfer cost incurred for each of them.

7. Conclusion

‘Move Small’ query execution strategy involves two steps first

an allocation is to be found and then it is refined to become an

optimal allocation to minimize data transfer cost. In [9] the first

step is achieved by applying the Max Flow-Min Cut approach.

The allocation thus obtained, is used to improve the data

transfer cost and fragment allocation by applying Hill

Climbing Algorithm. The overall time complexity of the

algorithm presented in [9] is approximated as O(m*(m-1))m-1

assuming equal number of fragments and sites.

On the same scale, we first use the algorithm developed in the

previous chapter for ‘Query Site’ query execution strategy and

further use a recursive technique for ‘Move Small’ query

execution strategy, to improve the data transfer cost and get the

optimal allocation of fragments. The time complexity of our

algorithm is calculated as O(m4+(m+1)!) which is much lower

as compared to that mentioned above. The time complexity

comparison is shown in Table 1 and graphically depicted in

Figure 1.

 S1 S2 S3

 S1 0 2 5

UDTC(,) = S2 2 0 3

 S3 5 3 0

 E G J

 E 0 5 0

D(,) = G 0 0 25

 J 0 0 0

 0 5 0

D(,) = (3+2+1) *

0

0

0

0

25

0

 0 30 0

= 0 0 150

 0 0 0

Vinod Kumar et al / International journal of research in engineering and innovation (IJREI), vol 2, issue 3 (2018), 274-279

279

Table 1: Time Complexity Comparison

Size (n, m) Earlier Method [KARL97]

 O((m*(m-1))m-1)

Present Method

O(m4+m+1!)

3,3 36 240

4,4 1728 376

5,5 160000 1345

6,6 21600000 6336

7,7 5489031744 42721

Figure 1: Time Complexity Comparison

References

[1] Ceri S., Martella G. and Pelagatti, “Optimal file allocation for a

distributed on a network of minicomputers”, In Proceedings of

International Conference on Database, Aberdeen ,pp., 345-357, July

1980.

[2] Ceri S., Martella G. and Pelagatti G., “Optimal file allocation in a
computer network : A solution method based on the knapsack problem”,

Computer Network, vol.6, no. 5, pp. 345-357, 1982.

[3] Ceri S., Navathe S. B. and Wiederhold G., “Distributed design of logical
database schemes”, IEEE Transactions on Software Engineering, vol. 9,

No. 4, pp. 487-503, 1983.

[4] Ceri S. and Pernici B, “DATAID-D : Methodology for distributed
database design”, Computer Aided Database Design, Amsterdam:

North-Holland, pp. 157-183, 1985.

[5] Chang S. K. and Liu A.C, “File allocation in a distributed database”,
International Journal of Computer Information Sciences, vol. 11, no. 5,

pp. 325-340, 1982.

[6] Chu W.W., “Optimal file allocation in multiple computer system”, IEEE
Transactions on Computers, C-18(10), 1969.

[7] Cornell D. W and Yu P. S., “Site assignment for relations and join

operations in the distributed transaction processing environment”, In
Proceedings of IEEE International Conference on Data Engineering,

Feb, 1988.

[8] Donald Kossman and K. Stocker, “Iterative Dynamic programming: A
new class of query optimization algorithms”, ACM Transactions on

Database Systems, vol. 25, no. 1, pp. 43-82, March 2000.

[9] Karlapalem K and Ng M. P, “Query driven data allocation algorithms for
distributed database systems”, In Proceedings of Int. Conference on

Database and Expert Systems Applications, pp. 347-356, sep 1997.

[10] Lin X. –M, Orlowaska M. E., and Zhang Y.-C , “Database placement in
communication networks for minimizing the overall Transmission cost”,

Mathematical and Computer Modeling, 19(1): 7-19, Jan 1994.

[11] Ram S. and Marsten R.E., “A model for database allocation
incorporating a concurrency control mechanism”, IEEE Transactions on

Knowledge and Data Engineering, vol. 3, No.3, pp. 389-395, 1991.

[12] Ramamoorthy C. V. and B. Wah, “The placement of relations on a
distributed relational databases”, In Proceedings of first International

conference Distributed Computing systems, Huntsville, Alabama,

September – October, , pp 642-649, 1979.
[13] Sacco G., “Distributed query evaluation in local area networks”. IEEE

Data Engineering Conference, pp. 510-516, 1984.

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1 2 3 4 5

