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Abstract  
 

A major component of the query execution cost is the data transfer cost. That is, the total cost involved in moving the data from the 

sites where it is located to the site where the query is issued. Therefore, to reduce the query execution cost it is desirable to minimize 

the data transfer cost. This can be possibly achieved by optimally allocating the database objects or fragments to the various sites of 

the DDBMS.                   © 2018 ijrei.com. All rights reserved 
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1. Introduction

Distributed database systems have been a phenomenal success 

in terms of facilitating organization and processing of large 

volume of data. Distributed relational database technology is 

nearly two decades old and have developed the main idea of 

maintaining consistency of distributed data and querying data.  

In distributed database system, a query requires data to be 

accessed from one or more sites. The cost of executing the 

query depends on the location of the query as well as the data. 

The data locality of a query determines the amount of data 

transfer incurred in processing the query, the higher the data 

locality the lower the data transfer costs. Thus, one is faced 

with the data allocation problem, the aim of which is to 

increase the data locality. 

The query processing consists of decomposing the queries and 

data localization. The data localization involves: identifying 

the fragments accessed by the query and generating the query 

operator tree. These generated query operator trees are further 

processed by taking into account a given query execution 

strategy and the information of the fragment size to generate a 

fragment dependency graph. 

The data allocation problem has been first studied in terms of 

file allocation problem in a multi computer system, and later 

on as a data allocation problem in distributed database system. 

The file allocation problem does not take into consideration the 

semantics of the processing being done on files, whereas it 

must take into consideration the interdependencies among 

accesses to multiple fragments by a query. The problem of file 

allocation with respect to multiple files on a multiprocessor 

system was first studied by Chu [6]. He presented a global 

optimization model to minimize overall processing cost under 

the constraints of response time and storage capacity with a 

fixed number of copies of each file.  

 

1.1 Literature Review 

 

A file allocation problem in the environment of a distributed 

database was analyzed in Ramamoorthy and Wah [12]. They 

developed a heuristic approximation algorithm for a simple file 

allocation problem as well as for the generalized file allocation 

problem. 

Ceri et al. [1] considered the problem of file allocation for 

typical database applications with a simple model of 

transaction execution taking into account the dependencies 

between accesses to multiple fragments. The Knapsack 

problem solution [2] and branch and bound techniques were 

further adopted to solve the problem. Chang [5] developed a 

theory of fragment allocation and designed a network flow 

algorithm to solve the database allocation problem. In [13] 

limited processing and network capacities are assumed, 

transmission of the result of a query to the results site is not 
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considered; only transmission between fragments are 

considered, rendering the problem into cluster analysis 

problem. 

Ceri proposed a simple method that ignores replication at the 

beginning and finds an optimal non–replicated solution. Then 

replication is handled by applying greedy algorithm that tries 

to improve the initial feasible solution [3, 4]. 

Cornell and Yu [7] proposed a strategy to integrate the 

treatment of relation assignment and query strategy to optimize 

performance of a distributed database system. Though they do 

take into consideration the query execution strategy, the 

solution, they came up with, is a complicated linear 

programming solution. The main problem in their approach is 

the lack of simplicity in both incorporation of the query 

execution strategy and the solution procedure. 

There have been many linear programming formulations 

proposed for data allocation problem [11]. The main problem 

with these approaches is the lack of modeling of the query 

execution strategy. Lin et al. also developed a heuristic 

algorithm for minimum overall data transfer cost, by 

considering replicated allocation of fragments and both read 

and update transactions [10].  The optimization heuristic 

iterates between finding minimum cost query strategy and 

minimum cost data allocation until local minimum for the 

combined problem is found. A new class of query optimization 

algorithms, known as iterative dynamic programming for 

query optimization was suggested by Donald and Stocker [8]. 

If all of the data required by a retrieval request is located at the 

requesting site then only local processing is needed. However, 

if some data is not located at the requesting site, then data must 

be accessed from and possibly processed at, other sites. A 

typical user can access the complete database from any site, a 

DDBMS processes and executes a user’s query by accessing 

the data from multiple sites. 

A major component of the query execution cost is the data 

transfer cost. That is, the total cost involved in moving the data 

from the sites where it is located to the site where the query is 

issued. Therefore, to reduce the query execution cost it is 

desirable to minimize the data transfer cost. This can be 

possibly achieved by optimally allocating the database objects 

or fragments to the various sites of the DDBMS. In the model 

presented here, we do not consider replicated allocation of 

fragments. The basic aspects of the problem are the same as 

discussed in the previous chapter. However, in the solution 

process ‘Move Small’ query execution strategy has been 

adopted. 

 

2. Nomenclature & Definitions 

 

 

N 

Number of fragments in the distributed 

database system. 

M Number of sites in the distributed database 

system. 

C Capacity of each site. 

NSI                   Number of site involvement. 

UDTC( , )          A matrix of unit cost of data transfer 

among   the sites. 

FRAG( )        An array storing the size of each fragment. 

R(,)                    A data transfer relation size matrix. 

FREQ( )                  A matrix storing the access frequencies of 

the queries at the given site. 

Sc (  )                 An array storing  site combinations.  

site(Fi )              Site of allocation of fragment Fi . 

         

3. Assumptions 

 

The present method is based on the following assumptions: 

1. The number of sites is equal to the number of fragments. 

2. The number of site involvement, is the greatest lower 

bound of  (n/c). 

3. Replication of fragment is not allowed, that is the 

allocation policy is static. 

4. The sites are fully connected. 

5. Each fragment is allocated to at least one site. 

6. The number of fragments allocated to each site does not 

exceed the maximum capacity of that site. 

7. The inter site distance is unity. 

 

4. Allocation Problem 

 

Let there be a set of fragments F = {F0, F1, …………...., Fn-1 } 

and  a network consisting of sites S = { S0, S1, …, Sm-1 } on 

which a set of applications Q={q0, q1, …, qg-1} are running. Let 

the m sites be connected by communication network. A link 

between two sites Si and Sj has a positive integer Ci,j associated 

with it giving the cost for a unit data transferred from site Si to 

site Sj. If the two sites are not directly connected by a 

communication link then the cost for the unit data transferred 

is given by the sum of the costs of the links of a chosen path 

from site Si to Sj. Each query qg   can be executed from any site 

with a certain frequency. Let FREQi,j be the frequency with 

which query qi is executed from site Sj . These frequencies of 

executions of queries at all sites can be represented by a matrix 

FREQ (,) of order mxn. A query may access one or more 

fragments. 

 

4.1 Query Execution Strategy 

 

The optimal orderings of binary operations is based on a ‘Move 

Small’ query execution strategy in distributed databases. 

Which can be stated as: 

 “If a binary operation involves two fragments located at two 

different sites    then ship the smaller fragment to the site of the 

larger fragment”. 

Here, the objective of the data allocation is  (i) to minimize the 

total data transfer cost to process all the queries by using 

‘Move Small’ query execution strategy (ii) to maximize the 

locality  of the fragments for executing the queries (iii) to 

incorporate the query execution strategy when a query needs 

to access fragments from multiple sites and reduce the total 

data transfer cost to process all the queries. 

 

4.1.1 Evaluation of Query  
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The construction of operator tree is an essential starting step 

for the evaluation of a query. An operator tree is a tree in which 

a leaf node is a relation stored in the database, and a nonleaf 

node is an intermediate relation produced by a relational 

algebraic operator. The sequence of operations is directed from 

the leaves to the root, which represents the answer to the query. 

 

Example 3.1: Let us consider the Example 3.1 again where a 

query 

 

“Find the names of employee other than J. Doe who worked on 

the CAD/CAM project for either one or two years.”  is to be 

performed by accessing relations E{Eno, Ename, Title}, 

G{Eno, Jno, Resp, Dur} and J{Jno,  Jname,  Budget}. 

 

It can be processed as given below: 

SELECT Ename 

FROM J,G,E 

WHERE G.Eno=E.Eno 

AND G.Jno=J.Jno  

AND Ename<> “J.Doe”  

AND J.name= “CAD/CAM”  

AND (Dur=12 OR Dur =24); 

 

The intermediate relations, generated after query restructuring 

phase, are J’, G’, E’, G” and J”. In case of ‘Move Small’ query 

execution strategy the corresponding fragment dependency 

graph is generated by shipping small fragments to the larger 

fragments site. The fragment dependency graph represents the 

fragment-nodes (like Site(J), Site(G), etc) i.e. a site where the 

fragments are located, and a query node Site(Q), where the 

query is initiated (i.e. query site). A cost value is attached to 

each edge of the graph corresponding to the amount of data 

that may be transferred if the fragments corresponding to the 

two nodes of the edge are located at different sites, or the 

location of the fragment and querying site are different. For 

example, in Figure 4.2, relations E and G are located at 

different sites then it will incur Size (E’) data transfer cost to 

process the join between relation E’ and G’ when using ‘Move 

Small’ query execution strategy. 

The inputs to the data allocation problem are 

    

1. A set of n fragments F = {F0, F1, F2 , …., Fn-1 }. 

2. A set of m sites S = {S0, S1, S2,.…., Sm-1 } and a matrix  

UDTC = [Ci,j] depicting the cost of transporting a unit of 

data from site Si to site Sj.  

3. A set of g queries Q= {q0, q1, …, qg-1} and a matrix 

FREQ= [FREQi,j] showing the frequency of qj initiated at 

Si. 

4. A matrix D giving the amount of data needed from a 

fragment to be transported to the site of another fragment 

is derived from the fragment dependency graph. 

5. A matrix R = [R1,  R2 ,…., Rn] where each element 

corresponds to the size of a relation. 

6. A vector V = [Vj ] the limit on maximum number of 

fragments that can be allocated at site Sj. This models the 

storage constraint of each site in data allocation. 

On the basis of the above inputs, we develop a cost model for 

total data transfer incurred to process all the queries. 

 

5. Cost functions of data transfer in DDBMS 
 

The fragment dependency graph of every query processing 

strategy models two types of data transfer cost. The first type 

of cost is due to moving the data from the sites where the 

fragment is located to the site where the query is initiated. The 

second type of cost is due to moving the data from the site 

where one fragment is located to the site where another 

fragment is located. In this case, the size of the fragment 

required by query  site does not vary with the location of other 

fragments as there is no dependency between the fragments 

accessed by the query. 

Let ri,j be defined as size of data of Fj needed to be transported 

the site where query qi is initiated. Let the frequency of query 

qi, initiated from site Sj,  be FREQi,j in a unit time interval. And 

let qi request for Fk and each request require  ri,k amount of data 

transfer from the site where Fk is located. So, the amount of 

data, need to be transferred from where  fragment Fk is 

allocated to the site Si where the queries are initiated, is given 

by matrix FREQ (,) of  order mxk.. Then amount of data 

transfer can be calculated as: 

 

ADT = 




1

0

n

j

FREQi,j* ri,j   (1) 

 

The total data transfer cost 

 

ADTC =








1

0

1

0

m

i

n

j

Csite(Fk),i * ADTi,j  (2) 

                       

The communication cost Ci,j  represents the communication in 

terms of bytes transferred, between the site (Fk) and site(Fi). 

The second type of data transfer cost incurred in the ‘Move 

Small’ query processing strategy is transporting the fragment 

from one site to the other site in order to perform the binary 

operations (i.e., join, union etc). In this case, the amount of data 

of a fragment required by a site varies with the allocation of 

other fragments. 

Let d λ,λ’ define the size of data from fragment Fλ  that needs to 

be transported  to the site where Fλ’ is located so as to execute 

some binary operation. Let the corresponding matrix, D(,), be 

of order kxk. But this is dependent on the query that is to be 

processed. Therefore, the query accesses both the fragment and  

extract the information about how much data needs to be 

transferred from site where one fragment is located to the site 

where another fragment is located. This information is 

extracted by the fragments dependency graph generator which 

processes the query operator trees on fragments by applying a 

query execution strategy and represents it in the fragment 

dependency graph. 

Let dγ
λ,λ’ be the size of data of Fλ need be transported to the site 
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where Fλ’ is located to process qγ . And let the corresponding 

matrix be Dγ. Then the amount of data that need be transported 

from the site of Fλ to the site of Fλ’ is given by: 

 

d λ,λ’  =  








1

0

1

0

(
k

j

n

i

FREQi,j) *dγ
λ,λ’   (3) 

 

Let site (Fλ) denote the site where fragment Fλ is located. Then 

the total transportation cost, t, is given by: 

 

t=








1

0

1

0'

k k

 

Csite(Fλ), site(Fλ’) *dλ,λ’ +








1

0

1

0

m

i

k



Csite(Fλ), i*ADTi, λ (4)                            

 

where the first term gives the data transfer cost incurred to 

process the binary operation between the fragments located at 

different sites, and second term gives the data transfer cost 

incurred to transfer the results of the binary operations of 

fragments to the site where the query is initiated. 

 

6. The proposed method and algorithm 

 

In ‘Move Small’ query processing strategy, the smaller 

fragment is moved to the site where larger fragment is located, 

to process the binary operation of the query. In such a query 

processing strategy the data transfer cost will play a major role 

for incurring the query processing cost. The optimal fragment 

allocation scheme can minimize this incurred query processing 

cost. A fragment is allocated to a site in such a way that 

extensive data transfer cost is avoided and the capacity of the 

site suit to the execution environment of the system. The 

proposed algorithm involves stepwise refinement of Data 

Transfer Cost among the sites by applying the recursive 

method, an array storing those site numbers on which the 

fragments are allocated sc(), and an array FRAG( ), containing   

the sizes of their  fragments  during allocation process of m 

fragments to n sites. The frequency of each query is stored in 

an array FREQ( ). These fragments are assigned to the sites in 

such a way that the total data transfer cost remains minimum.  

 

6.1 Formal Algorithm 

 
FUNCTION: 

 

Site_Comb (sc(), start, m ,  k , NSI ) 

Site_Perm (sc(), NSI, i) 

Swap(sc, i ,j) 

Cost_Cal (sc, NSI, i) 

 

/* Main Program */ 

BEGIN 

Read(n)    

Read(m)    

Read(c)         

If (n% c !=0) 

NSI = int (n/ c) +1 

Else 

NSI = int (n / c) 

For i=1 to m Do 

For j =1 to m Do 

Begin 

Read ( UDTC(i,j) )     

end 

For i=1 to n  Do 

begin 

Read(  FRAG(i) )   

end 

For j=1 to m Do 

begin 

Read ( FREQ (j) )  

end 

For j=1 to m  Do 

begin 

Read( R ( j ) ) 

end 

For i=1 to m Do 

begin 

sum=sum + FREQ(i) 

end 

END  /* End of Main Program */ 

/* Function return the Site Combination */ 

Site_Comb (sc(), start, m, k, NSI) 

BEGIN 

If (k>NSI) 

begin 

Site_Perm(sc, NSI, 1) 

Return 

end 

For i=start to m  Do 

begin 

sc(k) = i 

Site_Comb(sc, i+1, m, k+1, NSI) 

end 

END 

Site_Perm (sc(), m, i)     /*Function return the Site 

Permutation */ 

BEGIN 

If( i= m ) 

begin 

Cost_Cal(sc,  m, 1) 

end 

else 

For j=1 to m  Do 

begin 

Swap(sc, i, j) 

Site_Perm(sc, m, i+1) 

Swap(sc, i, j) 

end 

END /* End of  Funtion*/ 

Swap (sc(), i, j)   /* Swap Function */ 

BEGIN 

t=sc(i) 
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sc(i) = sc(j) 

sc(j) = t 

END 

 Cost_Cal (sc(), m,  i)    /* Cost Calculation */ 

BEGIN 

Total_cst=0 

For i=1 to m  Do 

For j=i+1 to m  Do 

begin 

adt = sum*FRAG ( sc(i) ) 

trnsf_cst = UDTC ( sc(i), sc(j)) * adt 

qry_site=sum – FREQ(sc(n)) 

qml = qry_site*r (m) 

total_cst = total_cst+ trnsf_cst +qml 

end 

END. 

 

6. Implementation of the algorithm 

 

Consider a distributed database system with 3 fully connected 

sites S1, S2, S3 and three relations E, G and J. Let the sizes of 

the fragments be size (E’) =5, size (J’’)= 30, size (G’’) = 25. 

First, we shall use the first level of the fragment dependency 

graph i.e. edge from Site (j)  Site (Q) to solve the initial 

allocation. As there is one query, we have the matrix R=[0, 0, 

30] with each element corresponding to relations E’, G”, and 

J’ respectively, and matrix FREQ = [3, 2, 1] with each element 

corresponding to the sites S1, S2, S3 respectively. Let the cost 

matrix for unit data transfer cost from one site to another site 

be: 

 

 

 

 

 

 

 

 

 

 

 

The matrix D( ,) giving the amount of data  needed from a 

fragment to be transported to the site of another fragment, is 

derived from the fragment dependency graph. 

 

 

 

 

 

 

 

 

 

 

By applying the equation 3, we get the total amount of 

data that must be transferred from the site where one 

fragment is located to the site where another fragment is 

located as: 

 

 

 

 

 

 

 

 

 

 

 
The total data transfer cost given by equation 4.4 for the initial 

allocation (S2, S1 ,S2) is (2*30 +2*150)+(2+1)*30 = 450. The 

cost value in first parenthesis corresponds to the data transfer 

cost incurred in transferring E’ to site (G) and G” to the site 

(J). The second cost value corresponds to the data transfer 

incurred in transferring the result J’ to the query site. 

We now apply the recursive method to improve the initial 

solution so as to reduce the total data transfer cost if possible, 

Table 4.1 shows all feasible allocation schemes and the data 

transfer cost incurred for each of them. 

 

7. Conclusion 

 

‘Move Small’ query execution strategy involves two steps first 

an allocation is to be found and then it is refined to become an 

optimal allocation to minimize data transfer cost. In [9] the first 

step is achieved by applying the Max Flow-Min Cut approach.  

The allocation thus obtained, is used to improve the data 

transfer cost and fragment allocation by applying Hill 

Climbing Algorithm. The overall time complexity of the 

algorithm presented in [9] is approximated as O(m*(m-1))m-1  

assuming equal number of fragments and sites. 

On the same scale, we first use the algorithm developed in the 

previous chapter for ‘Query Site’ query execution strategy and 

further use a recursive technique for ‘Move Small’ query 

execution strategy, to improve the data transfer cost and get the 

optimal allocation of fragments. The time complexity of our 

algorithm is calculated as O(m4+(m+1)!) which is much lower 

as compared to that mentioned above. The time complexity 

comparison is shown in Table 1 and graphically depicted in 

Figure 1. 

 

 

 

 

 

  S1 S2 S3 

 S1 0 2 5 

UDTC(,) = S2 2 0 3 
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  E G J 

 E 0 5 0 

D(,) = G 0 0 25 

 J 0 0 0 

  0 5 0 

D(,)  =   (3+2+1) * 
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Table 1: Time Complexity Comparison 

Size (n, m) Earlier Method [KARL97] 

   O((m*(m-1))m-1 ) 

Present Method 

O(m4+m+1!) 

3,3 36 240 

4,4 1728 376 

5,5 160000 1345 

6,6 21600000 6336 

7,7 5489031744 42721 
 

Figure 1: Time Complexity Comparison 
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