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1. Introduction  

 

Utilizing lightweight materials with exceptional qualities is 

essential in today's industrialized and modernized society. As 

a result, Al, Mg, and their alloys are widely employed in 

various sectors (including automotive, shipbuilding, 

aerospace, etc.) due to their superior utilization and 

lightweight, high specific strength, elasticity, and other 

qualities. These metals and alloys are combined using various 

welding procedures to get the most satisfactory results 

possible. Welding has long been the most popular technology 

in several industrial areas due to its superior advantages over 

other joining processes. Although most metals are fused using 

various welding techniques, dissimilar welding of Al-Mg 

provides a particularly challenging scenario due to multiple 

metallurgical considerations [1,2]. This has sparked substantial 

study into different welding metals. By using traditional fusion 

procedures, it is exceedingly challenging to fuse different Al-

Mg alloys because doing so results in the development of 

massive intermetallic compounds (IMCs), which significantly 

impact the mechanical characteristics of the weld [2,3]. 

Various researchers in their literature have put forth three 

approaches to prevent the production of IMCs: solid state 

welding to restrict welding temperatures; control of thermal 

history fluctuation in chemical reaction mechanism at the weld 

interface. [4-6]. FSW is therefore thought to be a superior 

solution for combining metals that are not the same. In light of 

the growing demand for Al-Mg alloys across many sectors, this 

review paper briefly outlines the numerous advancements and 

difficulties relating to FSW of different Al-Mg joints. The 
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main topics of this article are the common joining process, 

welding settings and how they affect welded joints, 

microstructural observations, etc. 

 

2. Intermetallic compound formation 

 

Limiting the formation of brittle and hard IMCs layer at weld 

joint interface during dissimilar Al &Mg FSW is the biggest 

challenge as it deteriorates the strength and elasticity of Al & 

Mg joints. This problem is not only associated with FSW but 

is also associated with many other welding processes such as 

laser welding, diffusion welding, resistance spot welding etc. 

[7-9]. The brittle and hard IMCs at the weld joint interface of 

Al & Mg promote micro-cracks and stress concentration. IMCs 

formation is unavoidable and nearly impossible to prevent; 

hence the best approach is to minimize such compounds. 

Kerimeyer et al. claimed that a mechanically sound joint has 

an IMC thickness of less than 10μm [10]. However, Qiu et al. 

claimed that an IMC thickness of 1.5μm offers maximum joint 

strength during dissimilar FSW of Al & steel [11]. IMCs 

thickness is variable and keeps varying between 0.5μm to 1μm 

[12]. Different researchers claimed different theories for the 

evolution of IMCs in dissimilar FSW of Al & Mg. Still, the 

main ideas discussed in various literature to clarify the 

formation of IMCs are mainly based on diffusion bonding, 

mechanical/material interlocking and constitutional liquation 

or eutectic reaction mechanism [13, 14]. The preceding 

discussion concerns whether the peak temperature during FSW 

welding surpasses Al-Mg eutectic lines of 4500C (Aluminium 

dominant side) and 437°C (Magnesium dominant side). 

Yamamoto et al. attributed the structure and growth of such 

mixtures to a diffusion phenomenon caused by the 

temperatures below the eutectic line [15].  

 

 
Figure 1: Eutectic microstructure in Al1050 and AZ31weld 

performed at 1.5mm min-1 and 2450 rev min-1 [16] 

 
Most researchers, however, believe that the eutectic reaction is 

essential in creating IMCs between Al-Mg FSW. This eutectic 

reaction or constitutional liquation may cause solidification 

cracks in the welds. The constitutional liquation is the main 

reason for excessive IMCs in Al-Mg welds that are detrimental 

to their strength [17]. Fig. 1 presents the eutectic 

microstructure in Al050 and AZ31weld.   

 

3. Rotational speed & Welding speed 

 

The most critical and necessary FSW parameters are the 

rotational tool speed, ω (rpm), and welding speed or tool linear 

speed, υ (mm/sec), as these parameters significantly impact 

material input and heat flow. Higher rotating speeds result in 

higher heat input. Still, higher welding rates or welding speeds 

result in lower heat input because heat input is directly 

proportional to rotational speed and inversely proportional to 

traverse speed. These parameters need to be optimised to 

obtain the best quality of the weld [18-21]. The fracture 

position of the weld is also affected by rotational tool speed, 

which widens the strained area and shifts the most significant 

strain zone towards the advancing side (AS) from its original 

retreating side (RS) [22, 23]. Many researchers have reported 

the phrase "revolutionary pitch" as one of the primary and key 

parameters to generating quality welds based on both 

parameters' compounding influence. The ratio of welding 

speed and rotational speed (υ/ω) is known as revolutionary 

pitch [24-26]. Fast welding (cold welding) is represented by a 

higher revolutionary pitch, while a lower extreme pitch 

represents slow welding (hot welding). Higher pitch ratios are 

responsible for lower peak temperatures and insufficient 

material flow. In contrast, too low pitch ratios are responsible 

for poor material flow and higher liquation, which further 

encourages the formation of IMCs, deteriorating the weld 

quality [27, 28]. When rotational speed is low, it promotes low-

temperature generation in the nugget zone, i.e. strengthening 

of particles is increased as shown in fig. 2(a) and 2(b). When 

this rotational speed is high, it leads to particle separation in 

TMAZ, as shown in fig. 2(c) and 2(d) [23]. 

According to different research articles, the revolutionary pitch 

ranging from 0.02 to 0.38mm/rev is considered favourable for 

dissimilar FSW of Al & Mg. The parameter that defines the 

joint quality is known as Joint efficiency. Joint efficiency is the 

ratio of the ultimate tensile strength (UTS) and base metal UTS 

with the lowest value (i.e. higher efficiency) in case of 

dissimilar welding. Rotational and traverse speeds also affect 

the macrostructure and weld appearance in dissimilar Al-Mg 

FSW [29]. Fig. 3 shows a different set of parameters and 

defects associated with them when Mg alloy was placed on the 

Advancing side during FSW. The Ultimate tensile strength 

(UTS) of the welds increases with increasing welding speed at 

constant rotational speed, as shown in fig. 3(a, b) [29]. Further, 

Yang C et al. reported an increase in elongation percentage 

with increasing welding speed, as shown in fig. 3(b) [27]. 

Elongation takes place due to the formation of IMCs and heat 

input. Heat input is inversely proportional to welding speed; 

hence, a lesser amount of heat input is produced at higher 

welding speeds. As a result of this, intermetallic compounds 

(IMCs) formation is significantly less hence making the Stir 

Zone (Stir Zone) less brittle [29, 30].
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Figure 2: Rotational speed effect on microstructure of Friction stir welding [FSW] zone at different RPMs. (a-d) [23]. 

 

Figure 3: (a) Graph showing variations in tensile strength with increasing welding speed and at constant rotational speed, (b) Graph showing 

percentage elongation and variation in UTS with increasing welding speed [29, 30]. 

 

4. Peak temperature effect and cooling effect FSW  

 

A large number of studies have reported the effect of peak 

temperature and cooling effect in one way or the other. The 

peak temperatures are measured using several thermocouples 

either inside the tool pin or into the sample. A K-type 

thermocouple on the bottom side of the job piece for peak 

temperature measurements was used [31]. The best strength 

was obtained at eutectic or peak temperatures between 430°C 

and 4600C. Further, they reported the effect of (a) peak 

temperature on stir zone (SZ) grain size, (b) IMCs and (c) 

hardness of the weld joint. The value of hardness and the 

amount of IMCs formation also increased in the weld nugget 

zone, but, on the other hand, lower welding and higher rotating 

speeds resulted in better corrosion resistance properties [29]. 

Firouzdor et al. stated that the Al must be placed at the 

advancing side to obtain higher peak temperatures and offset 

the tool towards the Al side [13]. The external water cooling 

methods during FSW of Al 5083 and Mg AZ31C-O to reduce 

peak temperature and obtain better weld quality [30]. When an 

underwater Friction stir welding (UFSW) method was 

developed and implemented on Mg alloy AZ31 and Al alloy 

6013 [34, 35]. However, Miyamori et al. found that using 

Underwater friction stir welding (UFSW) on carbon steel 

resulted in higher torque and compressive force in the z-axis 

compared to traditional FSW because water cooling limits 

temperatures and increases the flow stress necessary for 

material plastic deformation shown in fig.4. During UFSW, the 

cooling rate is faster than in air because the specific heat of 

water is roughly four times that of air. A faster cooling rate 

suggests grain expansion in the heat affected, and the weld 

nugget zone is constrained. It's also worth noting that the rate 

at which weld cools varies from surface to surface, depending 

upon the thickness of the weld. According to Zettler et al. [36], 

the bottom portion of Al 6040 and Mg AZ31 alloy 

manufactured via FSW has a higher hardness value. The 
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bottom surface shows quick cooling when compared to all 

other sample surfaces, most likely due to direct surface-to-

surface contact with the backing plate, which acts as a heat sink 

[36].

 

 
Figure 4. (a) Torque Vs Time graph (b) Power Vs Time of dissimilar FSW of Al 6061 - Mg AZ31B at different travel speeds (in mm/sec) and at 

rotational speed of 1400rpm [13]. 

 
5. Microstructural characterization in FSW of Al-Mg 

 
The Base Material (BM), heat-affected zone(HAZ), thermo-

mechanically affected zone (TMAZ) and stir zone (SZ), also 

known as nugget zone (NZ), are formed by plastic deformation 

and friction heating caused by the rotating and stirring impact 

of FSW tools. The welded junction's quality and characteristics 

are determined by each weld zone's microstructural features 

[37-40] The weld nugget zone and its surroundings are the 

subjects of microstructural characterization. Dynamic 

recrystallization (DRX) of Al and Mg grains has been observed 

in the nugget zone, where a reduction in grain size below 18μm 

compared to the parent metal is often observed due to the tool's 

stirring action [41]. Grain size refinement and the existence of 

IMCs increase the hardness and decrease the flexibility in the 

welding zone compared to the work piece. 

 

5.1 IMCs Observation 

 

IMCs form either at the joint interface in the weld nugget zone 

or at lamellar shear bands. IMCs so formed are brittle, and their 

thickness ranges from 1μm to 3μm [42]. However, many 

studies claim that the IMCs thickness between 1.5μm and 

10μm produces good quality defect-free welds [43, 44]. The 

development of nano-sized grains of the Al3Mg2 phase in 

immediate proximity to the Al12Mg17 IMC phase layer shows 

the presence of both IMC's brittle phases. Many other studies 

also claimed the same. However, compared to the Al3Mg2 

phase, the Al12Mg17 phase is more prevalent. To avoid the 

development of IMCs, it is necessary to maintain peak 

temperatures up to some extent, which is not an easy task. As 

a result, choosing the best set of parameters to solve the IMCs 

problem is a fascinating and important research topic. Figures 

13 to 15 depict the production of IMCs at the interface of Al 

and Mg alloys during FSW 

 
6. Hardness and its variation 

 

Hardness value mainly depends upon strain rate, process 

temperature, and material flow. Throughout the welding 

process, the dispersion of magnesium particles in the 

aluminium matrix is also significant. The hardness valuation is 

indeed a comprehensive characterization method for 

determining the properties of tensile strength, namely ultimate 

and yield tensile strength) in HAZ [46]. The hardness value 

substantially increases during the strengthening phenomenon 

due to the production of IMCs [47]. Different hardness profiles 

described by other authors in FSW of Al-Mg are shown in 

figure 19. The Al-Mg weld line had the highest hardness value, 

most likely due to mechanical twinning, grain refinement, 

recrystallization and solid solution strengthening. The 

presence of the Al12Mg17 phase IMC contributes to the 
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increased hardness. Because recrystallized grains were 

predominantly found in the weld nugget zone (WNZ), the 

maximum hardness value was obtained there, as shown in fig. 

19 (a–d). The complex material behaviour was noticed which 

was the fundamental explanation for the highest microhardness 

values in the weld nugget zone [48-52]. The hardness of the 

weld nugget zone is always higher than that of the base metals 

due to the presence of brittle IMCs and microscopic grain size 

after severe plastic deformation. The hardness degree of a weld 

varies not just between weld zones but also from top to bottom 

along its length. Welding aluminium with acceptable ductility 

(lower hardness) in the stir zone using the FSW method is an 

exciting and challenging subject of research that needs to be 

thoroughly researched.

 

 
Figure 5. (a) SEM images of Mg alloy AZ31 inclusion in Al alloy AA6040 and IMCs formation around it. (b)Enlarged view of IMCs so formed 

as described in earlier. (c) TEM image showing the separation of Al alloy AA6040 (left) from Mg alloy AZ31 by fine-grained intermetallic 

compound (d) TEM image showing the availability of small nano -sized grains of the Al3Mg2 phase adjacent to the Al12Mg17 [45] 

 

7. Conclusions 

 

This research article describes the general trends and 

advancements in friction stir welding of aluminium and 

magnesium and their alloys. Despite the progress in Al-Mg 

dissimilar FSW technology over the last 20 years, critical 

elements such as microstructural stability, tool design, welding 

parameters and welding of novel alloys and metals still require 

much more investigation. Many areas of these elements are 

either untouched or inadequately focused.  

This article uses a binary phase diagram to explain the basic 

science during friction stir welding of Al-Mg, taking into 

account the insufficient solubility of both metals. The next 

significant roadblock in producing brittle and harmful IMCs 

has been addressed by several contradictory ideas that explain 

it. The emergence of brittle IMCs is unquestionably a 

watershed moment in the evolution of dissimilar metal 

welding. The process of controlling the IMCs in dissimilar 

welding and techniques to avoid their creation has not been 

adequately pursued. Most of the research to date focuses on the 

genesis and dispersion of these IMCs; this area requires much 

more investigation to control the formation of IMCs to obtain 

the best welding joints. 

Many research articles highlighted in this paper advocated that 

tool design, geometry, and positioning play an essential role in 

forming the defect-free weld. Most suggested using aluminium 

on the advancing side and magnesium on the retreating side to 

get type 3 interfaces during FSW of dissimilar Al-Mg welding. 

However, they are not clear about the exact best positions of 

the base materials in lap or butt welds; hence, this problem 

needs to be focused on in the upcoming research. 

Finally, this article summarizes the latest advancements and 

developments in dissimilar FSW of Al-Mg. Furthermore, the 

recommendations given here should not be regarded as hard 

and fast laws but rather as general principles that might be 

applied to future events. 
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Figure 6:Distribution in hardness level in FSW of Al-Mg:(a)Al-A383 & Mg-AZ91[53];(b)Al-6013 & Mg-AZ31[31];(c)Al-6063&Mg-

AZ31B[54];(d)AA 6061-T4 & Mg-AZ31B[55] 
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