
 

Corresponding author: Abhishek Yadav 

Email Address: khilari.abhishek@gmail.com                                  

https://doi.org/10.36037/IJREI.2020.4106                                               60 

International Journal of Research in Engineering and Innovation Vol-4, Issue-1 (2020), 60-68 

_______________________________________________________________________________________________________________________________________ 

 

International Journal of  Research in Engineering and Innovation  

(IJREI) 
journal home page: http://www.ijrei.com 

 

ISSN (Online): 2456-6934 
 

 
___________________________________________________________________________________________ 
 

Numerical analysis and fluid structure interaction of flow around a flat plate at  

low reynolds number  
 

Abhishek Yadav, Arshad Mehmood 

 
1Department of Mechanical Engineering, Roorkee College of Engineering, Roorkee, Uttrakhand, India 
2Department of Mechanical Engineering, College of Engineering/ University of Buraimi, Oman. 

_________________________________________________________________________________________________________________________

 

 

 

 

 

 
   
 

 

 

 

 

 

 

_____________________________________________________________________________________________________________ 
 

1. Introduction 

 

Fluid shape interplay of plates have been widely used in a number 

engineering discipline such as aircraft construction, present day 

construction engineering and nuclear strength plant etc. Many 

scientist have labored on vibration of such plates [1-2]. Classical 

plate idea (CPT) have been used with the aid of the many 

researchers. The herbal frequencies of the plate by using ignoring 

the shear deformation used to be investigated. The CPT was once 

proposed first order shear deformation plate concept to cast off 

the deficiency of the slightly thick plates [3-6]. The precise closed 

structure attribute equation of vibrating relatively thick 

rectangular plates was once investigated [7]. This strategy offers 

non-conservative results, so it is required to look at the fluid shape 

interplay (FSI) issues in a coupled manner considering the 

flexibility effect of the structure, so each the systems are coupled 

and solved as one device [8-11]. Formulation based totally on 

displacement variable are commonly chosen for the structure 

while the fluid is described through unique variables such as 

pressure, displacement, speed plausible etc. for such coupled 

problems. A range of investigator used hydrodynamic pressure as 

the unknown variable in FEM in the fluid area [12-13]. But in this 

case unsymmetrical matrices and unique cause laptop software 

are required [14-15]. The equations of fluid area in terms of a 

displacement workable was represented [16]. The coupled 

equations of movement turn out to be unsymmetrical but 

irrationality condition of fluid action is automatically satisfied. 

Many scientist have formulated governing equations of fluid in 

phrases of displacements. The major gain of the displacement 

primarily based components is that the fluid factors can be easily 

coupled with the structural factors the usage of FEM methods. 

But the degree of freedom for the fluid domain increases. 

Furthermore, the fluid displacement should satisfy the 

irrationality condition, otherwise zero frequency specious modes 

may also occur. The variable such as strain and speed used for 

representing the governing equations for fluid [9], but the 

requirement of computational time will become higher as variety 

of unknown parameters make bigger in the fluid domain. The 

answer of the coupled device might also be trained with the aid 

of fixing the two system one at a time with the interplay effects 

with the aid of iteration [20-24]. In contact with water, the first 

bending mode structure of a circular plate constant at 
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circumference was once calculated [25]. Powell and Robert tested 

lamb’s result by way of experimentally, they suggests that their 

frequencies had been slightly greater than the lamb [26]. The 

response of cantilever plate contact with air and water was carried 

out via the experimental techniques [27] and these consequences 

had been in contrast with theoretical calculations. The natural 

frequencies of vertical cantilever plates in part and definitely 

submerged in liquid was calculated. These values have been in 

contrast with outcomes acquired with the aid of finite component 

methods. The herbal frequency bought with the aid of finite 

element techniques were about 15% higher than those got in 

experiments [28]. The vibration response of cantilever vertical 

and horizontal plates in part or totally submerge in water used to 

be studied. It used to be analyzed that the plates vibrated in a 

semi-infinite fluid medium. They used an aggregate of finite 

aspect technique (FEM) and singularity distribution panel 

approach to find out the dynamic responses of plates in vacuum 

[29]. The fluid Structure Interaction of drift and aerodynamic 

overall performance of two dimensional pleated airfoil is carried 

out at Reynolds range 100, 200, 500, and one thousand will be 

performed with perspective of assault zero to 150 [30-33]. The 

coefficient of drag, pressure distribution and vortex shedding for 

different Reynolds variety with exclusive attitude of assault had 

been analyzed and in contrast with numerical result that shows 

desirable agreement [34-35] 

 

1. Numerical Methodology [40] 

 

1.1 Structural Model 

 

Fig. 1b indicates the four node element and nodal diploma of 

freedom. Each node has six diploma of freedom that suggests 

the in-plane and out-plane displacement factors and their spatial 

derivatives. Sander’s thin shell principle [36] gives zero strain 

for small inflexible physique motion, this case is no longer 

same as other theories [37-39]. To advance the governing 

equations of the rectangular plates, the sander’s equation for 

cylindrical shells are used assuming the radius to be infinite, i.e. 

two θ = y and rdθ=dy. 

 

 
(a) 

 
(b) 

Figure 1: (a) Finite aspect discretization of rectangular plate and (b) 

Geometry and displacement field of a normal issue [40] 

 

1.2 Equilibrium equation and displacement function [40] 

 

P22 

𝜕2𝑉

𝜕𝑦2
 + P21 

𝜕2𝑈

𝜕𝑥𝜕𝑦
 + P33 (

𝜕2𝑈

𝜕𝑥𝜕𝑦
  +

𝜕2𝑉

𝜕𝑥2
) = 0   (1) 

P11 

𝜕2𝑈

𝜕𝑥2
 + P12 

𝜕2𝑉

𝜕𝑥𝜕𝑦
 + P33 (

𝜕2𝑉

𝜕𝑥𝜕𝑦
  +

𝜕2𝑈

𝜕𝑥2
) = 0   (2) 

P44 

𝜕4𝑊

𝜕𝑥4
 + (P45 + P54+ 2P66) 

𝜕4𝑊

𝜕𝑥2𝜕𝑦2
 + P55 

𝜕4𝑊

𝜕𝑦4
 = 0  (3) 

 

The displacement field may be defined as follows: 

 

U (x, y, t) = C1 +C2

x

A
 + C3 

y

B
 + C4

xy

AB
   (4) 

V (x, y, t) = C5 +C6

x

A
 + C7 

y

B
 + C8

xy

AB
   (5) 

W (x, y, t) = ∑ 𝐶𝑗𝑒
𝑖𝜋(

𝑥

𝐴
+ 
𝑦

𝐵
)
𝑒𝑖𝜔𝑡24

9    (6) 

 

The membrane effects emerge as extraordinarily important. Eq. 

(6) can be developed in Taylor’s series as [41] 

 

W (x,y,t)= C9 + C10

x

A
 + C11

𝑦

𝐵
 + C12

x2

2𝐴2
 + C13

xy

AB
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y2

2𝐵2
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x3

6𝐴3
 + 

C16

x2𝑦

2𝐴2𝐵
 + C17

xy2

2A𝐵2
 + C18

𝑦3

6𝐵3
 + C19

x3𝑦

6𝐴3𝐵
 + C20 

x2y2

4𝐴2𝐵2
 + C21

x3y2

6𝐴𝐵3
 + 

C22

x3y2

12𝐴3𝐵
2 + C23

x2y3

12𝐴2𝐵
3 + C24

x3y3

36𝐴2𝐵
3  (7) 

 

The displacement field may additionally be rewritten in the form 

of matrix members of the family as follows 

 

{
𝑈

𝑉

𝑊

} = [R]{C}      (8) 

 

{C} = {C1, C2 …….…C24}T   (9) 

 

The factors of this final vector can be determined the use of 24 

levels of freedom introduced for a plate thing as shown in Fig. 1b. 

The displacement vector of every component is given as 
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{δ}= {{δi} T, {δj} T , {δk} T , {δl} T }   (10) 

 

Each node, i.e. ‘‘node i’’, possesses a nodal displacement vector 

composed of the following terms: 

 

{δi}= {Ui, Vi, Wi, ∂Wi/ ∂x, ∂Wi/ ∂y, ∂2Wi/ ∂x ∂y (11) 

 

The elementary displacement vector can be defined as 

 

{δ}= [A]{C}      (12) 

 

where [A] is a (24, 24) matrix. 

 

The displacement field may be described by the following 

relation: 

 

{
𝑈

𝑉

𝑊

} = [R][A]-1{δ} = [N]{δ}    (13) 

 

Where matrix [N] of order (3x24) is the displacement shape 

function of the finite element.  

 

1.3 Kinematics relations 

 

 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
2𝜀𝑥𝑦
𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦}

 
 

 
 

 = 

{
 
 
 
 
 

 
 
 
 
 

𝜕𝑈

𝜕𝑥
𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑥
+

𝜕𝑈

𝜕𝑦

−
𝜕2𝑊

𝜕𝑥2

−
𝜕2𝑊

𝜕𝑦2

−2
𝜕2𝑊

𝜕𝑥𝜕𝑦}
 
 
 
 
 

 
 
 
 
 

    (14) 

 

Substituting the displacement elements defined in Eq. (13) into 

the strain–displacement relationship (14), one obtains an 

expression for the pressure vector as a feature of nodal 

displacements. 

 

𝜀 = [Q] [A]-1{δ} = [B]{δ}    (15) 

 

Where matrix [Q], of order (6x24) 

 

1.4 Constitutive equations 

 

The stress–strain relationship of an anisotropic rectangular plate 

is defined as follows. 

 

{σ} = [P] {ε}      (16) 

 

Where [P] is the elasticity matrix (6x6). The elements of [P] 

symbolize the shell anisotropy, Substituting Eq. (15) into Eq. (16) 

results in the following expression for the stress vector as a 

function of nodal displacements [42-49]. 
 

{σ} = [P] [B] {δ}     (17) 

 

The mass and stiffness matrices for one finite element can be 

expressed as  

 

 

[𝐾𝑠]
𝑒 = ∬ [𝐵]𝑇[𝑃][𝐵]𝑑𝐴

𝐴
   (18a) 

 

[𝑚𝑠]
𝑒 = 𝜌

𝑠
ℎ∬ [𝑁]𝑇[𝑁]𝑑𝐴

𝐴
   (18b) 

 

Where dA is the issue surface area, h is the plate thickness and 

ρ_s is the material density and [P], [N] and [B] are defined in Eqs. 

(16, 13 and 15), substituting them into Eqs. (18.a and 18.b) we 

attain 

 
 

[𝐾𝑠]
𝑒 = [[𝐴]−1]𝑇[A] (∫ ∫ [𝑄]𝑇[𝑃][𝑄]

𝑥𝑐

0

𝑦𝑐
0

 𝑑𝑥 𝑑𝑦)[A]-1  (19a) 
 

[𝑚𝑠]
𝑒 = 𝜌

𝑠
ℎ[[𝐴]−1]𝑇[A] (∫ ∫ [𝑄]𝑇[𝑃][𝑄]

𝑥𝑐

0

𝑦𝑐
0

 𝑑𝑥 𝑑𝑦)[A]-1 (19b) 

 

Where xc and yc are dimensions of an issue in accordance to the 

X and Y coordinates, respectively. These integrals are calculated 

the use of Maple mathematical software 

 

2. Fluid Modeling 

 

Linear potential flow is applied to shows the fluid effect that leads 

to the fluid dynamic forces. The Laplace equation may be 

expressed as in the Cartesian coordinate  

 

∇2 𝜑 =  
𝜕
2
𝜑

𝜕𝑥2
 + 
𝜕2𝜑

𝜕𝑦2
 +
𝜕2𝜑

𝜕𝑧2
 = 0    (20) 

 

Using Bernoulli’s equation the fluid pressure at the solid–fluid 

interface may be expressed as 

 

P│z=0 = -ρf

𝜕𝜑

𝜕𝑡
│z=0      (21) 

 

The following separate variable relation is assumed for the 

potential velocity function 

 

𝜑 (x, y, z, t) = F(z) S(x,y,t),   (22) 

 

Where F(z) and S(x. y, z) are two separate functions to be 

determined. 

The permanent contact between the plate surface and the 

peripheral fluid layer may be written as  
𝜕𝜑

𝜕𝑧
│z=0 = 

𝜕𝑊

𝜕𝑡
     (23) 
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The following expression may be defined by introducing Eq. (16) 

into Eq. (17) 

 

S (x, y, t) = 
1

𝑑𝐹(0)/𝑑𝑧

𝜕𝑊

𝜕𝑡
    (24) 

 

For X and Y in the finite element domain (see Figs. 1b and 2), 

substituting Eq. (24) into (22), and results in the following 

expression for the potential function: 

 

𝜑 (x, y, z, t)= 
𝐹(𝑧)

𝑑𝐹(0)/𝑑𝑧

𝜕𝑊

𝜕𝑡
    (25) 

 

Substituting Eq. (25) into relation (20) leads to the following 

differential equation of second order. 

 

 
(a) 

 
(b) 

Figure 2. (a) Coupled fluid-structure element possessing a free surface 

of fluid at Z = h1 and (b) plate element in contact with fluid bounded by 

a rigid wall at Z = h1 [40] 

 
𝑑2𝐹(𝑧)

𝑑𝑧2
 – µ2F (z) = 0     (26) 

 

Where µ = π √
1

𝐴2
+ 

1

𝐵2
 

The general solution of eq. (26) is given as  

F(z) = A1eµz + A2e-µz    (27) 

 

Substituting eq. (27) into (25), one gets the following expression 

for the potential function. 

 

𝜑 (x, y, z, t)= 
(𝐴1𝑒

µz+ 𝐴2𝑒
−µz)

𝑑𝐹(0)/𝑑𝑧

𝜕𝑊

𝜕𝑡
   (28) 

 

Where A1 and A2 are two unknown constants. The potential 

function 𝜑 must be verified for given boundary conditions at the 

fluid-structure interface and the fluid extremity surfaces (Z = h1 

or Z = h2) as well. 

 
2.1 Plate fluid model with free surface  

 

The following condition may be applied at the fluid free surface 

to the velocity potential, see Fig. 2a 

 
𝜕𝜑 (𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
│z=h1 = - 

1

𝑔

𝜕2𝜑

𝜕𝑡2
    (29) 

 

The introduction of Eq. (28) simultaneously into relation (29) and 

(23), results in the following expression for the potential function 

 

𝜑 (x, y, z, t)= 
1

𝜇
[
𝑒µz+ 𝐶𝑒−µ(z−2ℎ1)

1− 𝐶𝑒2µℎ1
]
𝜕𝑊

𝜕𝑡
   (30) 

 

Where C = (gµ - ω2)/ (gµ + ω2)    (31) 

 

The corresponding dynamic pressure at the fluid-structure 

interface become 

 

P= 
𝜌𝑓

𝜇
[
1+ 𝐶𝑒2µℎ1

1− 𝐶𝑒2µℎ1
]
𝜕2𝑊

𝜕𝑡2
 = Zf1 

𝜕2𝑊

𝜕𝑡2
   (32) 

 

2.2 Plate-fluid model bounded by a rigid wall 

 

The boundary condition at the upper surface of the fluid 

represented in Fig. 2b was studied by Lamb [25] and referred to 

as the null-frequency condition. This rigid wall boundary 

condition is expressed as 

 
𝜕𝜑

𝜕𝑧
│z=h1 = 0      (33) 

 

Similarly, by introducing Eq. (28) into relations (33) and (23), we 

obtain the following expression for the velocity potential as 

follows 

 

𝜑 (x, y, z, t)= 
1

𝜇
[
𝑒−µz+ 𝑒µ(z−2ℎ1)

𝑒−2µℎ1  −1
]
𝜕𝑊

𝜕𝑡
   (34) 

 

The dynamic pressure for this case is determined as  

 

P= - 
𝜌𝑓

𝜇
[
𝑒−2µℎ1+1

𝑒−2µℎ1− 1
]
𝜕2𝑊

𝜕𝑡2
 = Zf2

𝜕2𝑊

𝜕𝑡2
   (35) 

 

The total dynamic pressure is therefore the sum of lower and 

upper pressures (fig.3) and can be calculated using Eqs. (32) and 
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(35), respectively. The resulting pressure is obtained as 

 

P= - 
𝜌𝑓

𝜇
[
1+ 𝐶𝑒2µℎ1

1− 𝐶𝑒2µℎ1
+ 

𝑒−2µℎ2+1

𝑒−2µℎ2− 1
]
𝜕2𝑊

𝜕𝑡2
 = Zf3

𝜕2𝑊

𝜕𝑡2
  (36) 

 

Where h1 and h2 are fluid level on top of the plate and fluid level 

below the plate surface, respectively. In the case of floating plate 

on the fluid free surface (Fig. 3) the resulting pressure is 

calculated using Eq. (35) at h2 level 

 

P= - 
𝜌𝑓

𝜇
[
𝑒−2µℎ2+1

𝑒−2µℎ2− 1
]
𝜕2𝑊

𝜕𝑡2
 = Zf4

𝜕2𝑊

𝜕𝑡2
   (37) 

 
 

 
Figure 3: Boundary conditions of rectangular plate totally submerged 

in fluid [49]. 

 

2.3 Boundary conditions 

 

The fluid domain is divided into two region as shown in fig.4. A 

constant velocity u is imposed on the left side whereas right side 

set as outflow region at zero gradient value. Pressure on the both 

side set as atmospheric i.e. P=Patm 

 

 
Figure 4: The zoomed view of the mesh 

 

2.4 Validation Case 

 

In order to validate the current numerical solver, simulations of 

flow past a flat plate were performed and compared to the 

published results of B.T. Tan et al., (1998). The validation results 

give a satisfactory measure of confidence in the fidelity of the 

simulation. 

 
Table 1: Validation 

 

3. Results and Discussion 

 

In steady flow, the pressure contours depict a different pressure 

throught the whole flat plate section at a particular Reynolds 

Number and a particular angle of attack.The pressure distribution  

changes with respect to different Reynolds number and different 

angle of attack. 

In steady flow, the streamlines depict a different vortex formation 

throughout the whole flat plate section. The vortex is formed at 

the low pressure sites. In the streamline at t=5 and t=10 the vortex 

is formed at the same position and there is no change in the vortex 

number and the vortex size that is the number of vortex formed is 

four and the size of all the four vortices is same. 

 

3.1 Effect of angle of attack 

 

Numerical analyses are conducted to evaluate the `aerodynamic 

performance of uniform flow past a two dimensional flat plate at 

a chord Reynolds number of 500, 1000, 2000, and 3000 with 

angle of attack 00 to 150. The mean drag and lift force coefficients 

pertaining to their respective flat geometry are tabulated in table 

2. At zero incidence, the drag production leads to some interesting 

observations. As expected, the overall drag coefficient of flat 

plate decreases as angle of attack increases because the viscous 

effects are more dominant at lower Reynolds numbers which 

cause the skin friction to be the major contributor to the overall 

drag. As it can be clearly seen that on increasing AOA from 00-

150 the area of the vortex formed in pressure contour as well as in 

streamline diagram is increasing, depicting that the coefficient of 

lift is increasing. Thus, for a steady flow, on increasing AOA the 

coefficient of lift increases but coefficient of drag is decreases. 

 
3.2 Effect of Reynolds Number in steady flow 

 

Now, if we talk about the effect of Reynolds number as we can 

see that on increasing the Reynolds number, the number of vortex 

forming is increasing, depicting increase in coefficient of lift.  

Thus, for a steady flow, coefficient of lift increases on increasing 

Reynolds number and coefficient of drag is decreases. Fig.5 

shows the measured pressure gradient around the flat plate at 

Reynold No 500 and angle of attack 00 to 150. flat plate was 

designed to have a large leading-edge radius to flatten the peak in 

pressure coefficient near the plate tip to discourage flow 

separation, flow separation was still found to take place on the 

lifting surface even when the angle of attack varies from 0 to 

150because of the low Reynolds numberA large circulation 

 

Validation 
 

C/t 
Reynolds 

No 

Drag 

Coefficient 

Present Result 5 1000 0.561 

B.T. Tan et al., (1998) [50] 5 1000 0.555 
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bubble was generated on the tip of the plate as a result of the flow 

separation. As angle of attack increasing, the pressure gradient 

over the surface of the plate become bigger and bigger. Therefore, 

the separation regions over the upper surfaces of flat plate 

enlarged significantly when the angle of attack increased to 150. 

 
Table 2: Values of CD, CL gliding ratio and deflecting for different Reynolds Number with their AOA 

Reynolds No AOA 
Lift coefficient 

(CL) 

Drag coefficient 

(CD) 
CL/CD Deflection (mm) 

500 

0 0.026 1.446 0.01798 0.457 

5 0.0376 1.39 0.02705 0.258 

10 0.072 1.284 0.056075 0.223 

15 0.1074 1.308 0.08211 0.229 

1000 

0 0.002 0.5558 0.003598 0.146 

5 0.0025 0.5314 0.004705 0.259 

10 0.0014 0.6455 0.002169 0.261 

15 0.071 0.666 2.29E-04 0.242 

2000 

0 0.001 0.3393 0.002947 0.231 

5 0.018 0.3351 0.053715 0.201 

10 0.0387 0.3514 0.110131 0.232 

15 0.0559 0.3259 0.171525 0.234 

3000 

0 0.0004 0.2406 0.001663 0.426 

5 0.02 0.2291 0.087298 0.357 

10 0.0389 0.2446 0.159035 0.386 

15 0.0565 0.2241 0.25212 0.690 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
Figure 5:  The pressure contour at Reynolds number 500 and angle of attack (a) 00, (b) 50 (c) 100 (d) 150 
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Figure 6: Variation of CD with different angle of attack for different 

Reynolds number 

 

 
Figure 7: Variation of CL with different angle of attack for different 

Reynolds number 

 

 
Figure 8:  Variation of CL with different Reynolds number for different 

angle of attack 

 

 
Figure 9: Variation of CD with different Reynolds number for different 

angle of attack 

 
Figure 10: Variation of Cl/Cd with different angle of attack for different 

Reynolds number 

 

 
Figure 11: Variation of Cl/Cd with different Reynolds number for 

different angle of attack 

 

 
Figure 12: Variation of Deflection with different angle of attack for 

different Reynolds number 

 

 
Figure 13: Variation of Deflection with different Reynolds number for 

different angle of attack 
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A comparison of the time-mean force coefficient and gliding ratio 

with varying chord Reynolds numbers are shown in fig (6-11). At 

Re = 500, the lift for flat plate is seen to be increases from angle 

of attack 00 to 150, while drag of the flat plate decreases between 

these range. The flat plate experiences a greater rate of increases 

and generate the most CL Analyzing the coefficient of drag, one 

observes that the viscous effects are dominant at a Reynolds 

number below 3000 and the drag production for flat plate are 

decreasing. The effect of the Reynolds number on the gliding 

ratio is shown in table 2. The maximum value of lift coefficient 

obtained at Re-1000 at angle of attack 150 whereas minimum lift 

was obtained at Re-1000 at AOA-00. 

The result in the form of lift and drag forces are then fed into the 

ANSYS Workbench solver and coupling from fluid to structure 

has been performed. Fig. 12-13 shows the variation of deflection 

to Reynolds no and angle of attack. It is seen to be that deflection 

is decreases at Re-500 and angle of attack (00 to 150) but there is 

some interesting result was found between Re-1000 to 3000 at 

AOA- 00 to 150. The minimum deflection occur in Re-1000, angle 

of attack 00 i.e. 0.146 mm and maximum value of deflection 

occurs in Re-3000 with angle of attack 150 i.e.0.690 mm. 

 

4. Conclusions 

 

Numerical Analysis have been used to study the fluid structure 

interaction on a flat plate and simulations confirm the notion that 

at Steady flow is found for Re-500, 1000, 2000 and 3000 with 

AOA 00, 50, 100 and 150..The overall drag coefficient decreases 

as Re is increased. But it shows variations with the different angle 

of attack. Minimum coefficient of Drag is obtained at AOA 150 

for Reynolds number 3000 i.e. 0.224 and Minimum coefficient of 

lift is obtained at AOA 00 for Reynolds number 3000 i.e. 0.0004. 

Minimum Gliding ratio is obtained at AOA-00 for Reynolds 

number 3000 i.e. 0.001663 and Maximum Gliding ratio is 

obtained at AOA-150 for Reynolds number 3000 i.e. 

0.25212.Maximum Deflection is obtained at same AOA-150 for 

same Reynolds number 3000 i.e. 0.690 mm. 
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