

International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com ISSN (Online): 2456-6934

Thermodynamic performance evaluation of single effect Li/Br H_2O vapour absorption refrigeration system cascaded with vapour compression system using ecofriendly HFC-134a and HFO-1234yf refrigerants

R.S. Mishra

Department of Mechanical and Production Industrial and Automobiles Engineering, Delhi Technological University, Delhi, India

Abstract

Vapour Absorption system is an attractive method for using the low grade energy directly for cooling. In this paper the effect of performance parameters on the thermodynamic performances of two single effect Li/Br H₂O systems cascaded by vapour compression refrigeration cycle at -53°C of evaporator temperature have been studied in detailed. The comparisons were made for two systems in terms of thermal performances. System-1: consisting of single effect vapour absorption refrigeration system cascaded with vapour compression system using ecofriendly refrigerant (i.e.HFC-134a) and system-2 consisting of single effect vapour absorption refrigeration system cascaded with vapour compression system using ecofriendly refrigerant (i.e.HFC-134a) and system-2 consisting of single effect vapour absorption refrigeration system cascaded with vapour compression system using ecofriendly refrigerant (HFO-1234yf) (system-2). Numerical computation was carried out using thermal model developed for -53°C of low temperature evaporator circuit by varying various thermodynamic parameters (i.e. such as effect of temperature overlapping (i.e. approach), generator temperature, absorber temperature, evaporator temperature of single effect Li/Br VARS cycle and evaporator temperature of VCRS cycle, etc.) and it is found that single effect cascade vapour absorption system using HFO-1234yf (System-2) has slightly lower thermodynamic performances in terms of overall coefficient of performances, and exergetic efficiency around 3% lower than single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using ecofriendly HFC-134a refrigerant (system-1). On first law efficiency (COP_{Cascade}) and exergetic efficiency of overall system have been presented and found that there is significant effect of performance parameters on overall coefficient of performance and exergetic efficiency of acacade system, i.e. COP is 1.434%, exergetic efficiency is 3.2156% and both types-EDRs is 5.922 lower than using HFC

© 2019 ijrei.com. All rights reserved

Keywords: Thermo-dynamic performance Comparison, Ecofriendly refrigerants, Cascade single effect VAR System

1. Introduction

Vapour Absorption system is an attractive method for using the low grade energy directly for cooling. Simple vapour absorption system consists of an absorber, a pump, a generator and a pressure reducing valve to replace the compressor of vapour compression system. This is an important advantage as compared to the conventional vapour compression system which operates on high grade energy. Another important feature of these systems is that they do not use any moving component except for a very small liquid pump. Vapour absorption system consists of four basic components viz. an evaporator, an absorber (located on low pressure side), a generator and a compressor (located on high pressure side). Refrigerant flows from the condenser to the evaporator, then through absorber to the generator and back to condenser, while the absorbent passes from absorber to the generator and back to absorber. For maximum efficiency, the pressure difference between the low pressure side and high pressure side is maintained as small as possible. In some places there is a fluctuation in the amount of heat availability which generates cyclic temperature changes in the cooling volume. This change alters the quality of the stored materials like fruits, meat, bakery products etc. The simple vapour absorption system consists of an absorber, a pump, a generator and a pressure reducing valve to replace the compressor of vapour compression system. The other components of the system are condenser, receiver, expansion valve and evaporator as in the vapour compression system. In Lithium bromide absorption system, a solution of lithium bromide and water is used. Water is being used as the refrigerant and Lithium bromide acts as an absorbent. Lithium bromide is a hydroscopic salt with high affinity for water vapour due to its very low vapour pressure. This system is generally used in air conditioning systems due to not very low temperature (above 0°C) requirements.

In a Li/Br-H₂O bromide vapour absorption system. The absorber and the evaporator are placed in one compartment which operates at the same low pressure of the system. The generator and condenser are placed together in another chamber that operates at the same high pressure of the system. In the absorber, the lithium bromide solution absorbs the water refrigerant, which creates a weak solution of water and lithium bromide. This weak solution is pumped by the pump to the generator where the solution is heated by the available waste heat. The water refrigerant gets vapourized and flows to the condenser where it is cooled while the strong solution of lithium bromide flows back to the absorber where it further absorbs water coming from the Evaporator. In condenser, water refrigerant loses heat and changes its phase into liquid. Then it passes to the evaporator through an expansion valve where pressure is reduced drastically. In evaporator water is sprayed at low pressure which absorbs the heat from the area to be cooled and gets converted into vapour state. The effect of various thermodynamic parameters (such as effect of temperature overlapping i.e. approach, generator temperature, absorber temperature, evaporator temperature of VCRS cycle, Evaporator temperature of single effect Li/Br VARS cycle, heat exchanger effectiveness, etc.) have been presented.

2. Literature Review

Getu and Bansal [1] carried out thermodynamic analysis of cascade refrigeration system using carbon dioxide–ammonia (R744–R717) to optimize operating parameters of the system Kilicarslan [2] carried out theoretical and experimental investigation of a two-stage vapor compression cascade refrigeration system using R-134a as the refrigerant.

Lee et al. [3] studied carbon dioxide and ammonia as refrigerants in the cascade refrigeration system and carried out thermodynamic analysis to determine the optimal condensing temperature of the cascade condenser to maximize the COP and minimize the exergy destruction of the system

Arora et.al. ^[4-5] developed energy and exergy analysis of single effect and series flow double effect water– lithium bromide absorption system and found that the irreversibility is highest in the absorber in both systems as compared to other systems. Gomri [6] developed the thermal models of single effect and double effect absorption refrigeration systems and found the best possible generator temperature and also observed that the first law efficiency (COP) of double effect system is around twice the first law efficiency (COP) of single effect system.

Kilic and Kaynakli [7] carried out energy analysis for finding the performance of a single stage water lithium bromide absorption refrigeration system by varying inputs parameters and found that that the maximum energy loss occurs in generator of the system. S.B. Riffat N. Shankland [8] designed the different types of absorption systems integration with vapour-compression systems. The double-effect parallel continuous absorption systems and their integration with vapour compression systems have been carried out.

Garimella and Brown [9] studied a NH3/H2O cascaded absorption-compression system coupled with subcritical CO2 vapor-compression cycle to breed low-temperature refrigerant. Cimsit and Ozturk [8] carried out thermodynamic analysis of vapour compression absorption cascaded refrigeration system (VCACRS) with H2O-LiBr and NH3-H2O and improved the system performances with lesser amount of energy input. Chinnappa et al. [9] developed a compressionabsorption cascaded refrigeration system which consist a conventional refrigerants with a solar operated, NH₃-H₂O, VARS for air conditioning application. Rogdakis and Antonopoulos [10] carried out absorption refrigeration system NH₃/H₂O running by waste heat and found COP lower as compared LiBr absorption refrigeration system. Fernández-Seara et al. [11] proposed a cascaded vapor NH₃/H₂O absorption refrigeration system with a CO2 compression vapour refrigeration system at an evaporation temperature of -45°C and found its COP using energy and exergy analysis.

Mishra [12-15] modelled the cascaded half effect vapour absorption refrigeration cycle coupled with vapour compression cycle. He has improved COP by 40% using the half effect LiBr/H2O vapour absorption refrigeration cascaded with vapour compression cycle using HFC-134a. It was evidenced that the performances of single effect cascaded vapour absorption refrigeration system coupled with vapour compression cycle significantly higher than that of existing cycle. Thermodynamic analysis of cascade single effect ammonia-water (NH₃-H₂0) vapour absorption refrigeration system coupled with vapour compression refrigeration using ecofriendly refrigerants in the low temperature cycle of VCRS system have been carried out and it is found that the dichloro-1-fluoroethane and Penta-fluoro-propane gives improved thermodynamic performances. The method for enhancement in the thermal performances of vapour absorption refrigeration system by using heat pipes developed by Mishra and Dewedi [16] by utilizing the waste heat in the condenser and found increase in COP of vapour absorption refrigeration system.

The above investigators have not gone through detailed analysis for finding performance improvement and the effect of performance parameters using HFC/134A and HFO/1234yf refrigerants in vapour compression refrigeration cycle cascaded with single effect LiBr/ H_2O vapour absorption system.

3. Results and Discussions

Following input data have been taken for numerical computation of single effect Li/Br vapour absorption refrigeration system cascaded with vapour compression refrigeration systems using HFC-134a (system-1) and HFO-

1234yf (system-2) refrigerants.

- (i) Effect of temperature overlapping (Approach= Temperature of cascade condenser vapour compression refrigeration cycle- cascade evaporator temperature of vapour absorption refrigeration cycle) variation from 0 to 18 using HFC-134a and HFO-1234yf refrigerants
- (ii) Compressor efficiency= 0.80
- (iii) Generator temperature variation single effect Li//Br vapour absorption refrigeration from 70 °C to 115 °C,
- (iv) Evaporator temperature vapour compression refrigeration system from $T_{EVA_VCRS} = -53^{\circ}C$.
- (v) Evaporator temperature vapour absorption refrigeration system $T_{EVA_VARS} = 05^{\circ}C$,
- (vi) Refrigeration effect of vapour absorption refrigeration system =29.167 "kW'
- 3.1 Effect of temperature overlapping($approach = T_{Cond_VCRS}$ - T_{Eva_VARS})

Table-1 (a-b) shows the variation of approach with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when temperature overlapping in terms of approach (means condenser temperature of vapour compression refrigeration minus evaporator temperature of vapour absorption refrigeration system) is increasing , the thermodynamic performances in terms of (COP_Cascade, exergetic efficiency Cascade System) is decreasing and EDR_ is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also decreasing as shown in table-1(b) respectively.

Table-1 (c) shows the variation of approach with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded single effect vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234vf refrigerant and it is found that when temperature overlapping in terms of approach (means condenser temperature of vapour compression refrigeration minus evaporator temperature of vapour absorption refrigeration system) is increasing, the thermodynamic performances in terms of (COP_Cascade, Exergetic efficiency_Cascade System) is decreasing and EDR_Rational is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR _{Cascade}) is also decreasing as shown in table-1(d) respectively.

The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator at -53° C and generator temperature at 110° C have been

compared and also shown in Tables-1 to Tables-2 respectively and it is found that thermodynamic performances using HFO-1234yf in cascaded vapour absorption system (system-2) in terms of COP is 1.434% lower and exergetic efficiency is 3.2156% lower than using HFC-134a For both type of EDRs 5.922% decreasing as temperature overlapping approach is increasing.

- (A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system
- Generator temperature= 110 °C,
- $T_{EVA_VARS} = 5^{\circ}C$,
- Refrigerating Effect=35.167 "kW'
- Condenser temperature (T _{Cond})=35°C
- Absorber temperature $(T_{Cond})=35^{\circ}C$
- (B) Performance of single effect Vapour Absorption System using energy-exergy method
- First law Efficiency (COP_VARS) =0.741,
- Exergy Destruction Ratio (EDR)=3.412, ,
- Exergetic Efficiency_VARS=0.2241,
- (C) PerforCmance of single effect Vapour Absorption System using entropy generation method
- First law Efficiency (COP_VARS) =0.741,
- Exergy Destruction Ratio (EDR)=3.759, ,
- Exergetic Efficiency_VARS=0.2101,
- (D) Input Parameters for vapour compression refrigeration system using HFC-134a
- Compressor efficiency= 0.80
- $T_{EVA_VCRS} = -53^{\circ}C.$
- Effect of Approach; 0 to 20

Temperature	1	ipression rejrig	Cascaded System
overlapping /	COP_Cascade	EDR_Cascade	Second Law
Approach(°C)			Efficiency
0	1.036	0.8522	0.5399
2	1.024	0.9024	0.5256
4	1.012	0.9530	0.5118
6	1.0	1.006	0.4984
8	0.9888	1.06	0.4854
10	0.9774	1.116	0.4727
12	0.9660	1.172	0.4603
14	0.9548	1.231	0.4483
16	0.9436	1.291	0.4365
18	0.9325	1.353	0.4251

Table-1(a) Effect of approach on exergy destruction ratio (EDR_Rational) of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

- (A) Input Parameters for vapour Double effect Li/Br-H₂O refrigeration system
 - Generator temperature= 110 °C,
 - $T_{EVA_VARS} = 5^{\circ}C$,
 - RE=35.167 "kW'
 - Condenser temperature (T_Cond)=35°C
 - Absorber temperature (T_ Absorber)=35°C
- (B) Performance of single effect Vapour Absorption System
 - First law Efficiency (COP_VARS) =0.741,
 - Exergy Destruction Ratio (EDR)=3.412, ,
 - Exergetic Efficiency_VARS=0.2241,

(C) Performance of single effect Vapour Absorption System using entropy generation method

- First law Efficiency (COP_VARS) =0.741,
- Exergy Destruction Ratio (EDR)=3.759, ,
- Exergetic Efficiency_VARS=0.2101,
- (D) Input Parameters for vapour compression refrigeration system
 - Effect of Approach; 0 to 20 using HFO-1234yf,
 - Compressor efficiency= 0.80
 - $T_{EVA_VCRS} = -53^{\circ}C.$

Table-1(b) Effect of approach on exergy destruction ratio (EDR_Rational) of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

		VCRS
COP_vcrs	EDR_vcrs	Second Law
		Efficiency
2.378	0.1862	0.8431
2.271	0.2418	0.8053
2.171	0.2991	0.7698
2.077	0.3581	0.7363
1.988	0.419	0.747
1.903	0.4819	0.6748
1.823	0.5470	0.6464
1.747	0.6143	0.6195
1.675	0.6841	0.5938
1.606	0.7566	0.5693
	2.378 2.271 2.171 2.077 1.988 1.903 1.823 1.747 1.675	2.378 0.1862 2.271 0.2418 2.171 0.2991 2.077 0.3581 1.988 0.419 1.903 0.4819 1.823 0.5470 1.747 0.6143 1.675 0.6841

- Effect of Approach; 0 to 20 using HFO-1234yf, Compressor efficiency= 0.80
- Generator temperature= 110 °C, $T_{EVA_VCRS} = -53$ °C. $T_{EVA_VARS} = 5$ °C, RE=35.167 "kW"
- Performance of Vapour Absorption System: COP_VARS=1.121, EDR=3.241,
- Exergetic Efficiency_VARS=0.2358,

Table-1(c) Effect of Approach on exergy Destruction Ratio (EDR) of
single effect vapour absorption refrigeration cascaded with vapour
compression refrigeration system

compression refrigeration system				
Temperature overlapping / Approach(°C)	COP_Cascade	EDR_Cascade	Cascaded System Second Law Efficiency	
0	1.027	0.8893	0.5293	
2	1.014	0.9448	0.5142	
4	1.001	1.002	0.4995	
6	0.9886	1.061	0.4852	
8	0.9760	1.122	0.4712	
10	0.9634	1.186	0.4575	
12	0.9509	1.252	0.44441	
14	0.9383	1.320	0.4311	
16	0.9258	1.391	0.4182	
18	0.9133	1.465	0.4057	

- Effect of Approach; 0 to 20 using HFO-1234yf, Compressor efficiency= 0.80
- Generator temperature= 110 °C, $T_{EVA_{VCRS}} = -53^{\circ}C$. $T_{EVA_{VARS}} = 5^{\circ}C$, RE=35.167 "kW'
- Performance of Vapour Absorption System:
- COP_VARS=1.121, EDR VARS=3.241,
- ExergeticEfficiency_vars=0.2358

Table-1(d) Effect of Approach on exergy Destruction Ratio (EDR) of
single effect vapour absorption refrigeration cascaded with vapour
compression refrigeration system

compression regrigeration system				
Temperature			VCRS Second	
overlapping /	COP_vcrs	EDR_vcrs	Law Efficiency	
Approach(°C)				
0	2.298	0.2273	0.8148	
2	2.188	0.2891	0.7758	
4	2.084	0.3533	0.7390	
6	1.986	0.420	0.7042	
8	1.893	0.4897	0.6713	
10	1.805	0.5624	0.6401	
12	1.722	0.6384	0.6101	
14	1.641	0.7181	0.5821	
16	1.565	0.8017	0.5550	
18	1.493	0.8898	0.5292	

3.2 Effect of of low temperature evaporator temperature of vapour compression refrigeration cycle on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

Table-2 (a) shows the variation of low temperature evaporator circuit temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when low temperature evaporator circuit temperature of vapour absorption

refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) is decreasing and exergetic efficiency_Cascade System is also decreasing and EDR_Rational is increasing . Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also decreasing and exergetic efficiency is increasing.as shown in table-2(b) respectively. The optimum values of single effect vapour absorption refrigeration cycle cascaded with vapour compression cycle for generator temperature of 110°C and condenser temperature and absorber temperature of 35°C by using HFO-1234yf refrigerant(system-2) has 1.353% lower COP and 3.036% lower exergetic efficiency and 5.703% higher EDR than System-1 using HFC-134a

(A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system

- Generator temperature= 110 °C,
- $T_{EVA_VARS} = 5^{\circ}C$,
- RE=29.167 "kW"
- Condenser temperature (T_Cond)=35°C
- Absorber temperature (T_Absorber)=35°C

(B) Performance of single effect Vapour Absorption System

- COP_VARS=0.7410, (vii) EDR=3.462,
- ExergeticEfficiency_VARS=0.2241

(C) Performance of single effect Vapour Absorption System using entropy generation method

- COP_VARS=0.7410, (vii) Irreversibility Ratio=3.759.
- Exergetic Efficiency_VARS=0.2101

(D) Performance of single effect Vapour Absorption System

- COP_VARS=0.7410,
- Maximum COP_VARS=1.815
- Exergetic Efficiency_VARS=0.4083

(E) Input Parameters for vapour compression refrigeration system

- Effect of Approach; 10 using HFC-134a,
- Compressor efficiency= 0.80
- $T_{EVA_VCRS} = -53^{\circ}C.$

Table-2(a) Effect of evaporator Temperature VCRS Evaporator onthermal performances of single effect vapour absorptionrefrigeration cascaded with vapour compression refrigeration

system					
Temperature VCRS	COP_	EDR_	Cascaded System		
Evaporator	Cascade	Cascade	Second Law		
T _Evaporator(°C)			Efficiency		
- 40	0.9774	1.116	0.4727		
- 45	0.9839	1.112	0.4735		
-50	0.9904	1.108	0.4743		

-51	0.9970	1.105	0.4751
-52	1.030	1.092	0.4781
-53	1.099	1.083	0.4802

- (A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system
 - Generator temperature= 110 °C,
 - $T_{EVA_VARS} = 5^{\circ}C$,
 - RE=35.167 "kW"
 - Condenser temperature (T_Cond)=35°C
 - Absorber temperature (T_ Absorber)=35°C
- (B) Performance of single effect Vapour Absorption System
 - COP_VARS=07410, (vii) EDR=3.759,
 - ExergeticEfficiency_VARS=0.2101,
- (C) Performance of single effect Vapour Absorption System
 - COP_VARS=07410, (vii) EDR=3.462
 - ExergeticEfficiency_VARS=0.2241
- (D) Performance of single effect Vapour Absorption System
 - COP_VARS=07410, (vii) EDR=3.759,
 - ExergeticEfficiency_VARS=0.2101,
- (E) Input Parameters for vapour compression refrigeration system
 - Effect of Approach; 10 using HFC-134a,
 - Compressor efficiency= 0.80
 - $T_{EVA_VCRS} = -53^{\circ}C.$

Table-2(b) Effect of evaporator Temperature VCRS Evaporator onthermal performances of single effect vapour absorptionrefrigeration cascaded with vapour compression refrigeration

	system		
Temperature VCRS	COP_vcrs	EDR_vcrs	VCRS
Evaporator			Second Law
$T_{Evaporator}(^{o}C)$			Efficiency
- 40	1.903	0.4819	0.6748
- 45	1.951	0.4713	0.6797
-50	2.0	0.4607	0.6846
-51	2.05	0.4501	0.6896
-52	2.33	0.3981	0.7153
-53	3.063	0.2952	0.7721

- (A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system:
 - Generator temperature= 110 °C,
 - $T_{EVA_VARS} = 5^{\circ}C$,
 - RE=29.167 "kW"
 - Condenser temperature (T_Cond)=35°C
 - Absorber temperature (T_ Absorber)=35°C

- (B) Performance of single effect Vapour Absorption System using entropy generation method
 - COP_VARS=07410, (vii) EDR=3.759,
 - ExergeticEfficiency_VARS=0.2101,
- (C) Performance of single effect Vapour Absorption System
 - COP_VARS=07410, (vii) EDR=3.462,
 - ExergeticEfficiency_VARS=0.2241,

(D) Performance of single effect Vapour Absorption System

- COP_VARS=07410, (vii) EDR=3.759,
- ExergeticEfficiency_VARS=0.2101,
- (E) Input Parameters for vapour compression refrigeration system
 - Effect of Approach; 10 using HFO-1234yf,
 - Compressor efficiency= 0.80
 - $T_{EVA_VCRS} = -53^{\circ}C.$

Table-2(b) Effect of evaporator Temperature VCRS Evaporator on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration

svstem

Temperature	COP_Cascade	EDR_Cascade	Cascaded
VCRS Evaporator			System Second
T _Evaporator (°C)			Law Efficiency
- 40	0.9634	1.186	0.4575
- 45	0.9702	1.180	0.4587
-50	0.9770	1.175	0.4599
-51	0.9839	1.169	0.4610
-52	1.019	1.147	0.4658
-53	1.054	1.131	0.4692

(A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system

- Generator temperature= 110 °C,
- $T_{EVA_VARS} = 5^{\circ}C$,
- RE= 35.167"kW"
- Condenser temperature (T_Cond)=35°C
- Absorber temperature (T_Absorber)=35°C
- (B) Performance of single effect Vapour Absorption System using entropy generation method
 - COP_VARS=0.7410, (vii) EDR=3.759,
 - ExergeticEfficiency_VARS=0.2101,

(C) Performance of single effect Vapour Absorption System

- COP_VARS=07410, (vii) EDR=3.462,
- ExergeticEfficiency_VARS=0.2241.

- (D) Performance of single effect Vapour Absorption System
 - COP_VARS=07410, (vii) EDR=3.759,
 - Exergetic Efficiency_VARS=0.2101,
- (E) Input Parameters for vapour compression refrigeration system

Table-2(b) Effect of evaporator Temperature VCRS Evaporator on thermal performances of single effect vapour absorption

- Effect of Approach; 10 using HF-134a,
- Compressor efficiency= 0.80
- $T_{EVA_VCRS} = -53^{\circ}C.$

refrigeration cascaded with vapour compression refrigeration					
system					
Temperature VCRS	COP_vcrs	EDR_vcrs	VCRS		
Evaporator			Second Law		
T _Evaporator(°C)			Efficiency		
- 40	1.805	0.5624	0.6401		
- 45	1.852	0.5496	0.6453		
-50	1.901	0.5369	0.6507		
-51	1.951	0.5243	0.6560		
-52	2.227	0.4626	0.6837		
-53	2.553	0.4023	0.7131		

The optimum value of second law efficiency of single effect Li/Br H₂O vapour absorption refrigeration system at 5°C of VARS evaporator temperature using HFO-1234yf occurred between VCRS evaporator temperature -30°C to -34°C (i.e. -31°C, -32°C and -33°C. The optimum exergetic efficiency is 46.67% with exergy destruction ratio is 1.143 and rational exergy destruction ratio is 0.5333) and similar second law performance (exergetic efficiency= 46.66%) which is less than optimum exergetic efficiency occurred at -30°C and -34°C. Table-2 (b) shows the variation of low temperature evaporator circuit temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234vf refrigerant and it is found that when low temperature evaporator circuit temperature of single effect Li/Br H₂O vapour absorption is increasing, the thermodynamic performances in terms of (COP_Cascade) & Exergetic efficiency_Cascade System is decreasing and EDR_Rational is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also decreasing and low temperature evaporator circuit temperature increasing along with exergetic efficiency of cascaded system is increasing as shown in table-2(d) respectively. The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234vf for low temperature circuit evaporator at -53°C have been compared and also shown in Table-2(a) & Table-2(d)

respectively and it is found that thermodynamic performances using HFO-1234yf in cascaded vapour absorption system in terms of COP is 1.643 % and exergetic efficiency is 3.201% lower than using HFC-134a.

- 3.3 Comparison between VCRS performance using HFC-134a and HFO-1234yf refrigerants at T _Evaporator = -30 (°C)
- (A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system
 - Generator temperature= 110 °C,
 - $T_{EVA_VARS} = 5^{\circ}C$,
 - RE=35.167 "kW"
 - Condenser temperature (T_Cond)=35°C
 - Absorber temperature (T_ Absorber)=35°C
- (B) Performance of single effect Vapour Absorption System
 - COP_VARS=0.7410, (vii) EDR=3.462,
 - Exergetic Efficiency_VARS=0.2241,
- (C) Performance of single effect Vapour Absorption System using entropy generation method
 - COP_VARS=0.7410, (vii) EDR=3.759,
 - Exergetic Efficiency_VARS=0.2101,
- (D) Performance of single effect Vapour Absorption System
 - COP_VARS=0.7410, (vii) Maximum COP_vars=1.815
 - Second law (Exergetic) Efficiency_VARS=0.4083,
- (E) Input Parameters for vapour compression refrigeration system
 - Using HFC-134a, R1234ze and R-1234yf
 - Effect of Approach; 10
 - Compressor efficiency= 0.80
 - $T_{EVA VCRS} = -30^{\circ}C.$

Table-3(a) Effect of ecofriendly refrigerants in the VCRS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

Ecofriendly	COP _{Cascade}	Rational	Cascaded System
Refrigerants		EDR_Cascade	Second Law
			Efficiency
R134a	1.135	1.088	0.4790
R1234ze	1.133	1.094	0.4776
R1234yf	1.127	1.121	0.4716

- (A) Input Parameters for vapour single effect Li/Br-H₂O refrigeration system
 - Generator temperature= 110 °C,
 - $T_{EVA_VARS} = 5^{\circ}C$,
 - RE=29.167 "kW"
 - Condenser temperature (T_Cond)=35°C
 - Absorber temperature (T_ Absorber)=35°C
- (B) Performance of single effect Vapour Absorption System
 - COP_VARS=1.121, (vii) EDR=3.24,
 - Exergetic Efficiency_VARS=0.2358,
- (C) Input Parameters for vapour compression refrigeration system
 - Using HFC-134a, R1234ze and R-1234yf
 - Effect of Approach; 10
 - Compressor efficiency= 0.80
 - $T_{EVA_VCRS} = -30^{\circ}C.$

Table-3(b) Effect of ecofriendly refrigerants in the VCRS on VCRS thermal performances of vapour compression refrigeration system cascaded with single effect vapour absorption refrigeration system.

Ecofriendly	COPvcrs	Rational	Cascaded System
Refrigerants		EDR_Cascade	Second Law
			Efficiency
R134a	3.555	0.2428	0.8046
R1234ze	3.535	0.2499	0.8001
R1234yf	3.444	0.2829	0.7795

Table-3(a) and Table-3(b) show, the effect of ecofriendly HFC-134a and HFO refrigerants in low temperature circuit with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H2O vapour absorption refrigeration system cascaded with vapour compression refrigeration at -30°C and it is found that the performance of HFC-134a refrigerant and HFO-1234ze are nearly similar with the variation of 0.5626% in first law efficiency and 0.559% in second law efficiency while the performance of HFC-134a is superior than HFO- 1234yf refrigerant. Therefore both HFO refrigerants can replace HFC-134a refrigerant in near future due to its very low global warming potential (i.e. GWP of R1234ze is 6 and GWP of R1234yf is 4 respectively as compared to GWP of HFC-134a is 1360).

- 3.4 Variation of vapour absorption refrigeration system evaporator temperature of vapour absorption system, when absorber temperature is same as condenser temperature
 - Evaporator temperature (T_EVA_VARS) varying from 5°C to 10°C
 - Generator temperature =110 °C
 - VCRS using HFC-134a , Compressor efficiency= 0.80
 - Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
 - Performance of Vapour compression System COP_VCRS=1.71, EDR=,0.6492
 - Exergetic Efficiency_VCRS=0.6064, EDR_Rational =0.3936

Table-5(a) Effect of vapour absorption refrigeration system evaporator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

regrigeration system				
Vapour absorption	COP_Cascade	EDR_Cascade	Cascaded	
system evaporator			System Second	
temperature (°C)			Law Efficiency	
05	0.9773	1.116	0.4726	
06	0.9745	1.168	0.4613	
07	0.9717	1.222	0.4501	
08	0.9891	1.277	0.4391	
09	0.9665	1.335	0.4283	
10	0.9641	1.394	0.4177	

- Evaporator temperature (T_{EVA_VARS}) varying from 5°C to 10°C
- Generator temperature =110 °C
- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System: COP_VCRS=1.71, EDR=,0.6492
- Exergetic efficiency_VCRS=0.6064, EDR_Rational =0.3936

Table-5(b) Effect of Vapour absorption system evaporatortemperature $(T_{evaporator})$ on thermal performances of single e effectvapour absorption refrigeration cascaded with vapour compressionrefrigeration system

regrigeration system				
Vapour absorption	COP_VARS	EDR_	VARS	
system evaporator		VARS	Second Law	
temperature (T_evaporator)			Efficiency	
05	0.7410	3.462	0.2241	
06	0.7438	3.68	0.2137	
07	0.7466	3.921	0.2032	
08	0.7496	4.19	1.927	
09	0.7527	4.491	1.821	
10	0.7560	4.832	0.1715	

- Evaporator temperature (T_EVA_VARS) varying from 5°Cto 10°C
- Generator temperature =110 °C
- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System: COP_VCRS= 1.71, EDR=,0.6492
- Exergetic Efficiency_VCRS=0.6064, EDR_Rational =0.3936.

<i>Table-5(d) Effect of generator temperature on thermal performances</i>
of single effect vapour absorption refrigeration cascaded with
vanour compression refrigeration system

vapourcompression refrigeration system					
Vapour absorption	COP_	EDR_vars	VARS		
system evaporator	VARS		Second Law		
temperature (T_evaporator)			Efficiency		
05	0.7410	3.759	0.2101		
06	0.7438	3.939	0.2025		
07	0.7466	4.36	0.1946		
08	0.7496	4.19	1.866		
09	0.7527	4.609	1.783		
10	0.7560	4.89	0.1698		

- Evaporator temperature (T_EVA_VARS) varying from 5°Cto 10°C
- Generator temperature =110 °C
- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System: COP_VCRS=1.71, EDR=,0.6492
- Exergetic Efficiency_VCRS=0.6064, EDR_Rational =0.3936.

<i>Table-5(d) Effect of generator temperature on thermal performances</i>
of single effect vapour absorption refrigeration cascaded with vapou

rcompression refrigeration system					
Vapour absorption	COP_	Maximum	VARS		
system evaporator	VARS	COP_VARS	Second Law		
temperature (T_evaporator)			Efficiency		
05	0.7410	1.815	0.4083		
06	0.7438	1.884	0.3947		
07	0.7466	1.959	0.3812		
08	0.7496	2.038	0.3678		
09	0.7527	2.124	0.3543		
10	0.7560	2.217	0.3410		

- Evaporator temperature (T_EVA_VARS) varying from 5°C to 10°C
- Generator temperature =110 °C
- VCRS using HFC-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System: COP_VCRS=1.588, EDR=,0.7759
- Exergetic Efficiency_VCRS=0.5631, EDR_Rational =0.4369.

Table-5(c) Effect of Vapour absorption system evaporator temperature $(T_{evaporator})$ on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

refrigeration system				
Vapour absorption system	COP_	EDR_	Cascaded	
evaporator temperature	Cascade	Cascade	System Second	
(T_evaporator) (°C)			Law Efficiency	
05	0.9613	1.197	0.4552	
06	0.9577	1.255	0.4434	
07	0.9542	1.316	0.4317	
08	0.9508	1.379	0.4203	
09	0.9474	1.445	0.4090	
10	0.9441	1.513	0.3979	

- Evaporator temperature (T_EVA_VARS) varying from 5°Cto 10°C
- Generator temperature =110 °C
- VCRS using HFC-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW"
- Performance of Vapour compression System:COP_VCRS=1.588, EDR=,0.7759
- ExergeticEfficiency_VCRS=0.5631, EDR_Rational =0.4369.

Table-5(d) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

vapour compression reprigeration system				
Vapour absorption	COP_VARS	EDR_	VARS Second	
system evaporator		VARS	Law	
temperature (T_evaporator)			Efficiency	
05	0.7410	3.462	0.2241	
06	0.7438	3.68	0.2137	
07	0.7466	3.921	0.2032	
08	0.7496	4.19	1.927	
09	0.7527	4.491	1.821	
10	0.7560	4.832	0.1715	

- Evaporator temperature (T_EVA_VARS) varying from 5°Cto 10°C
- Generator temperature =110 °C
- VCRS using HFC-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System:COP_VCRS=1.588, EDR=,0.7759
- ExergeticEfficiency_VCRS=0.5631, EDR_Rational =0.4369.

Table-5(d) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapourcompression refrigeration system using entropy generation

method				
Vapour absorption	COP_VARS	EDR_	VARS	
system evaporator		VARS	Second Law	
temperature (T_evaporator)			Efficiency	
05	0.7410	3.759	0.2101	
06	0.7438	3.939	0.2025	
07	0.7466	4.36	0.1946	
08	0.7496	4.19	1.866	
09	0.7527	4.609	1.783	
10	0.7560	4.89	0.1698	

- Evaporator temperature (T_EVA_VARS) varying from 5°Cto 10°C
 Generator temperature =110 °C
- VCRS using HFC-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW"
- Performance of Vapour compression System:COP_VCRS=1.588, EDR=,0.7759
- Exergetic Efficiency_VCRS=0.5631, EDR_Rational = 0.4369.

Table-5(d) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

vapour compression reprigeration system					
Vapour absorption	COP_va	Maximum	VARS		
system evaporator	RS	COP_VARS	Second Law		
temperature			Efficiency		
05	0.7410	1.815	0.4083		
06	0.7438	1.884	0.3947		
07	0.7466	1.959	0.3812		
08	0.7496	2.038	0.3678		
09	0.7527	2.124	0.3543		
10	0.7560	2.217	0.3410		

Table-5 (a) shows the variation of Vapour absorption system evaporator temperature (T_evaporator) with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H2Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when Vapour absorption system evaporator temperature (T_evaporator) of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) is decreasing and Exergetic efficiency _CascadeSystem is increasing and EDR_Rational is decreasing . Similarly exergy destruction ratio based on the exergy of product (EDR _{Cascade}) is also decreasing and exergetic efficiency is increasing as shown in table-5(b) respectively. Table-5 (c) shows the variation of generator temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H2O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234yf refrigerant and it is found that when generator temperature of tripple effect Li/Br H₂O vapour absorption is increasing, the thermodynamic performances in terms of (COP Cascade) & EDR Rational is decreasing and Exergetic efficiency_Cascade System) is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also decreasing and generator temperature increasing along with exergetic efficiency of cascaded system is increasing as shown in table-5(d) respectively.

The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator

at -53°C and Vapour absorption system evaporator temperature at 5°C have been compared and also shown in Table-5(a) to Tables-5(d) respectively and it is found that thermodynamic performances using HFO-1234yf (system-2)in cascaded vapour absorption system in terms of COP is 3.87223% and exergetic efficiency is 4.2815 % lower than using HFC-134a (system-1)with increasing 7.9875% at 8°C of evaporator of single effect vapour absorption systems.

3.5 Variation of generator temperature of vapour absorption system, when absorber temperature is same as condenser temperature

Table-6 (a) shows the variation of generator temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when generator temperature of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad) is decreasing and Exergetic efficiency_Cascade System is increasing and EDR_Rational is decreasing . Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also decreasing and exergetic efficiency is increasing.as shown in table-6(b) respectively. Table-6 (c) shows the variation of generator temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234yf refrigerant and it is found that when generator temperature of single effect Li/Br H₂O vapour absorption is increasing , the thermodynamic performances in terms of (COP_Cascade) &EDR_Rational is decreasing and Exergetic efficiency_Cascade _{System}) is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also decreasing and generator temperature increasing along with exergetic efficiency of cascaded system is increasing as shown in table-6(b) respectively. The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator at -53°C and generator temperature at 110°C have been compared and also shown in Table-6(a) to Tables-6(d) respectively and it is found that thermodynamic performances using HFO-1234yf (system-2) in cascaded vapour absorption system in terms of COP is 1.4322% lower and exergetic efficiency is 3.3044 % lower than using HFC-134a(System-1).

• Generator temperature varing from 80 to 115 °C

- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS = 5°C, RE=29.167 "kW"
- Performance of Vapour compression System: COP VCRS=1.903,
- Exergetic Efficiency_vcrs=0.6748, EDR_vcrs=0.4819.

Table-6(a) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

vapour compression reprigeration system				
T_generator	COP_Cascade	Rational	Cascaded	
(°C)		EDR_Cascade	System Second	
			Law Efficiency	
80	1.013	0.792	0.5580	
85	1.004	0.8497	0.5406	
90	0.9968	0.9062	0.5246	
95	0.9901	0.9614	0.5099	
100	0.9845	1.015	0.4963	
105	0.9802	1.067	0.4839	
110	0.9774	1.116	0.4727	
115	0.975	1.163	0.4623	

- Generator temperature varing from 80 to 115 °C
- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE = 35.167 "kW"
- Performance of Vapour compression System: COP_VCRS =1.903,
- Exergetic Efficiency_vcrs=0.6748, EDR_vcrs=0.4819.

Table-6(b) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

T_generator	COP_vars	EDR_vars	VARS Second
(°C)			Law Efficiency
80	0.7752	1.995	0.3339
85	0.7669	2.256	0.3071
90	0.7596	2.513	0.2847
95	0.7532	2.763	0.2658
100	0.7479	3.006	0.2496
105	0.7438	3.24	0.2359
110	0.7410	3.462	0.2241
115	0.7388	3.678	0.2138

- Generator temperature varing from 80 to 115 °C
- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE= 35.167 "kW'
- Performance of Vapour compression System: COP_VCRS= 1.903,
- ExergeticEfficiency_VCRS=0.6748,
- EDR__vcrs=0.4819.

Table-6(b) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system using entropy generation

·	method				
T_generator	COP_vars	Irreversibility	VARS Second Law		
(°C)		Coefficient	Efficiency		
80	0.7752	3.555	0.2195		
85	0.7669	3.603	0.2172		
90	0.7596	3.646	0.2152		
95	0.7532	3.684	0.2135		
100	0.7479	3.717	0.2120		
105	0.7438	3.742	0.2109		
110	0.7410	3.759	0.2101		
115	0.7388	3.773	0.2095		

• Generator temperature varing from 80 to 115 °C

- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW"
- Performance of Vapour compression System: COP_VCRS=1.903,
- Exergetic Efficiency_vcrs=0.6748, EDR_vcrs=0.4819.

Table-6(b) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

T_generator	COP_vars	Maximum	VARS Second
(°C)		COP_VARS	Law Efficiency
80	0.7752	1.181	0.6562
85	0.7669	1.294	0.5925
90	0.7596	1.404	0.5409
95	0.7532	1.511	0.4985
100	0.7479	1.615	0.463
105	0.7438	1.716	0.4334
110	0.7410	1.815	0.4083
115	0.7388	1.911	0.3866

- Generator temperature varing from 80 to 115 °C
- VCRS using HFO-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW"
- Performance of Vapour compression System:COP_VCRS=1.805, EDR=,1.117
- ExergeticEfficiency_VCRS=0.5624, EDR_vcrs=0.6401.

Table-6(c) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with

	vapour compression regrigeration system				
T_generator	COP_Cascade	EDR_Cascade	Cascaded System		
(°C)			Second Law Efficiency		
80	0.9983	0.8575	0.5383		
85	0.9898	0.9160	0.5219		
90	0.9824	0.9733	0.5088		
95	0.9759	1.029	0.4928		
100	0.9704	1.084	0.4799		
105	0.9662	1.136	0.4682		
110	0.9634	1.186	0.4575		
115	0.9601	1.234	0.4476		

- Generator temperature varing from 80 to 115 °C
- VCRS using HFC-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System: COP_VCRS=1.805,
- Exergetic Efficiency_vcrs=0.6748, EDR_vcrs=0.6401.

Table-6(b) Effect of generator temperature on thermal performances of triple effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

vapour compression reprizeration system			
T_generator	COP_VARS	EDR_vars	VARS Second Law
(°C)			Efficiency
80	0.7752	1.995	0.3339
85	0.7669	2.256	0.3071
90	0.7596	2.513	0.2847
95	0.7532	2.763	0.2658
100	0.7479	3.006	0.2496
105	0.7438	3.24	0.2359
110	0.7410	3.462	0.2241
115	0.7388	3.678	0.2138

- Generator temperature varying from 80 to 115 °C
- VCRS using HFC-134a, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=35.167 "kW'
- Performance of Vapour compression System: COP_VCRS=1.805,
- Exergetic Efficiency_vcrs=0.6748, EDR_vcrs=0.6401.

Table-6(b) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

T_generator	COP_VARS	Irreversibility	VARS Second Law
(°C)		Coefficient	Efficiency
80	0.7752	3.555	0.2195
85	0.7669	3.603	0.2172
90	0.7596	3.646	0.2152
95	0.7532	3.684	0.2135
100	0.7479	3.717	0.2120
105	0.7438	3.742	0.2109
110	0.7410	3.759	0.2101
115	0.7388	3.773	0.2095

- Generator temperature varing from 80 to 115 °C
- VCRS using HFC-1234yf, Compressor efficiency= 0.80
- Approach=10, T_EVA_VCRS = 53°C. T_EVA_VARS= 5°C, RE=29.167 "kW"
- Performance of Vapour compression System: COP VCRS=1.805,
- ExergeticEfficiency_vcrs=0.6748, EDR_vcrs=0.6401.

Table-6(b) Effect of generator temperature on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

	vapour compression reprigeration system				
T_generator COP_VARS Maximum VARS Second				VARS Second Law	
	(°C)		COP_VARS	Efficiency	
	80	0.7752	1.181	0.6562	

85	0.7669	1.294	0.5925
90	0.7596	1.404	0.5409
95	0.7532	1.511	0.4985
100	0.7479	1.615	0.463
105	0.7438	1.716	0.4334
110	0.7410	1.815	0.4083
115	0.7388	1.911	0.3866

- 3.6 Variation of condenser temperature of vapour absorption system, when absorber temperature is same as condenser temperature
- Evaporator temperature of VARS using HFC-134a = -53°C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE =29.167 "kW', T Absorber=T Cond
- Performance of Vapour compression System: COP_VCRS=1.903,
- Exergetic Efficiency_vcrs=,0.2630, EDR_vcrsi=0.4822.

Table-7(a) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when $T \in \mathbb{R}^{T-T}$ is the formula of the temperature of the temperature of the temperature of the temperature of temperature

I_Cond-I_Absorber				
T_Cond	COP_Cascade	EDR_Cascade	Cascaded System	
			Second Law Efficiency	
31	0.9827	1.109	0.4741	
32	0.9414	1.111	0.4738	
33	0.9801	1.112	0.4734	
34	0.9787	1.114	0.4730	
35	0.9773	1.116	0.4726	
36	0.9760	1.118	0.4722	
37	0.9747	1.119	0.4719	
38	0.9735	1.121	0.4715	
39	0.9724	1.222	0.4712	
40	0.9713	1.123	0.4709	

- Evaporator temperature of VARS using HFC-134a = -53°C, Compressor efficiency= 0.80
- Double effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=35.167 "kW', T_Absorber=T_Cond
- Performance of Vapour compression System:COP_VCRS=1.903,
- ExergeticEfficiency_vcrs=,0.2630, EDR_vcrsi=0.4822.

Table-7(b) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when $T_Cond=T_Absorber$

T_Cond	COP_VARS	EDR_VARS	VARS Second
			Law Efficiency
31	0.7461	3.432	0.2256
32	0.7449	3.439	0.2253
33	0.7437	3.447	0.2249
34	0.7423	3.455	0.2245
35	0.7410	3.759	0.2241

36	0.7398	3.47	0.2237
37	0.7385	3.478	0.2233
38	0.7374	3.484	0.2230
39	0.7363	3.491	0.2227
40	0.7353	3.497	0.2224-

- Evaporator temperature of VARS using HFC-134a = 53 °C, Compressor efficiency= 0.80
- Double effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE= 35.167 "kW', T_Absorber=T_Cond
- Performance of Vapour compression System: COP_VCRS=1.903,
- Exergetic Efficiency_VCRS = 0.2630, EDR_VCRSI = 0.4822.

Table-7(b) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when $T_{cond} = T_{cond}$ absorption wing entropy generation method

<u>1_Cond-1_Absorber</u> Using entropy generation method				
T_Cond	COP_VARS	EDR_vars	VARS Second	
			Law Efficiency	
31	0.7461	3.327	0.2126	
32	0.7449	3.734	0.2112	
33	0.7437	3.742	0.2109	
34	0.7423	3.750	0.2105	
35	0.7410	3.759	0.2101	
36	0.7398	3.767	0.2098	
37	0.7385	3.774	0.2095	
38	0.7374	3.782	0.2091	
39	0.7363	3.788	0.2088	
40	0.7353	3.94	0.2086	

- Evaporator temperature of VARS using HFC-134a = 53 °C, Compressor efficiency= 0.80
- Double effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=35.167 "kW', T_Absorber=T_Cond
- Performance of Vapour compression System: COP_VCRS=1.903,
- Exergetic Efficiency_vcrs=,0.2630, EDR_vcrsi=0.4822.

Table-7(b) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when T cond=T Absorber

$I_Cond \equiv I_Absorber$				
T_Cond	COP_VARS	Maximum	VARS Second	
		COP_VARS	Law Efficiency	
31	0.7461	2.206	0.3383	
32	0.7449	2.097	0.3552	
33	0.7437	1.996	0.3725	
34	0.7423	1.903	0.3902	
35	0.7410	1.815	0.4083	
36	0.7398	1.733	0.4269	
37	0.7385	1.656	0.4460	
38	0.7374	1.584	0.4656	
39	0.7363	1.516	0.4857	
40	0.7353	1.791	0.5065	

- Evaporator temperature of VARS using HFO-1234yf = -53°C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=35.167 "kW', T Absorber=T Cond
- Performance of Vapour compression System: COP_VCRS=1.791,
- Exergetic efficiency_VCRS=0.6349,EDR_VCRSI=0.5751.

Table-7(c) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when $T = T^{T} T^{T}$

$I_Cond = I_Absorber$					
T_Cond	COP_Cascade	EDR_Cascade	Cascaded System		
			Second Law Efficiency		
31	0.9665	1.190	0.4566		
32	0.9653	1.192	0.4563		
33	0.9640	1.193	0.4559		
34	0.9626	1.195	0.4556		
35	0.9613	1.197	0.4552		
36	0.960	1.199	0.4548		
37	0.9587	1.20	0.4545		
38	0.9575	1.202	0.4542		
39	0.9564	1.203	0.4539		
40	0.9554	1.205	0.4536		

- Evaporator temperature of VARS using HFO-1234yf = -53 °C, Compressor efficiency= 0.80
- Double effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=35.167 "kW', T_Absorber=T_Cond
- Performance of Vapour compression System:COP_VCRS=1.791,
- Exergetic Efficiency_vcrs=0.6349, EDR_vcrsi=0.3630,

Table-7(d) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when $T__{Cond}=T__{Absorber}$

ICona-IAbsorber				
T_Cond	COP_vars	EDR_vars	VARS Second	
			Law Efficiency	
31	0.7461	3.432	0.2256	
32	0.7449	3.439	0.2253	
33	0.7437	3.447	0.2249	
34	0.7423	3.455	0.2245	
35	0.7410	3.759	0.2241	
36	0.7398	3.47	0.2237	
37	0.7385	3.478	0.2233	
38	0.7374	3.484	0.2230	
39	0.7363	3.491	0.2227	
40	0.7353	3.497	0.2224-	

- Evaporator temperature of VARS using HFO-1234yf = -53 °C, Compressor efficiency= 0.80
- Double effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=35.167 "kW', T_Absorber=T_Cond

- Performance of Vapour compression System: COP_VCRS=1.791,
- Exergetic Efficiency_vcrs=0.6349, EDR_vcrsi=0.3630,

Table-7(d) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when

	$T_Cond = T_Absorber$				
T_Cond	COP_VARS	EDR_VARS	VARS Second		
			Law Efficiency		
31	0.7461	3.327	0.2126		
32	0.7449	3.734	0.2112		
33	0.7437	3.742	0.2109		
34	0.7423	3.750	0.2105		
35	0.7410	3.759	0.2101		
36	0.7398	3.767	0.2098		
37	0.7385	3.774	0.2095		
38	0.7374	3.782	0.2091		
39	0.7363	3.788	0.2088		
40	0.7353	3.94	0.2086		

- Evaporator temperature of VARS using HFC-134a = 53 °C, Compressor efficiency= 0.80
- Double effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=35.167 "kW', T_Absorber=T_Cond
- Performance of Vapour compression System: COP_VCRS=
- Exergetic Efficiency_vcrs=,EDR_vcrsi=0.

Table-7(b) Effect of condenser temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system when $T = c_{1} = T$

$I_Cond=I_Absorber$				
T_Cond	COP_VARS	Maximum	VARS Second	
		COP_VARS	Law Efficiency	
31	0.7461	2.206	0.3383	
32	0.7449	2.097	0.3552	
33	0.7437	1.996	0.3725	
34	0.7423	1.903	0.3902	
35	0.7410	1.815	0.4083	
36	0.7398	1.733	0.4269	
37	0.7385	1.656	0.4460	
38	0.7374	1.584	0.4656	
39	0.7363	1.516	0.4857	
40	0.7353	1.791	0.5065	

Table-7 (a) shows the variation of condenser temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when condenser temperature of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) and Exergetic

efficiency_Cascade System both are decreasing and EDR_Rational is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also increasing as exergetic efficiency is decreasing. Table-7 (b) shows the variation of low temperature evaporator circuit temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234yf refrigerant and it is found that when absorber temperature of double effect Li/Br H₂O vapour absorption is increasing, the thermodynamic performances in terms of (COP_Cascade) & Exergetic efficiency_Cascade System is decreasing and EDR_Rational is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also increasing .Table-7 (c) shows the variation of condenser temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when condenser temperature of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) and Exergetic efficiency_Cascade System both are decreasing and EDR_Rational is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR_Cascade) is also increasing and exergetic efficiency is decreasing. The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator at -53°C and generator temperature at 110°C have been compared and also shown in Table-7(a) to Table7(d) respectively and it is found that thermodynamic performances using HFO-1234yf (ystem-2) in cascaded vapour absorption system in terms of COP, is 1.6372 % lower than using HFC-134a (system-1)at 35°C of condenser temperature and 1.643% lower than using HFC-134a at 35°C of condenser temperature respectively. Similarly. The exergetic efficiency using HFO-1234vf is 3.682% lower than R134a at 35°C and exergy destruction ratio is 7.256% higher than system-1 at 35°C respectively.

- 3.7 Effect of absorber temperature of single effect vapour absorption cascaded vapour absorption refrigeration system on thermal performances
- Evaporator temperature of VCRS using HFC-134a = -53°C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T_Cond=35°C

• Performance of Vapour compression System performance of Vapour compression System: COP_VCRS=1.903, EDR= 0.4822 Exergetic Efficiency_VCRS=,0.6747, EDR_Rational =0.3253.

Table-8(a) Effect of absorber temperature of VARS on thermal performances of single -effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

cuseducu with vapour compression reprigeration system				
T_Absorber	COP_Cascade	EDR_Cascade	Cascaded System	
(°C)			Second Law	
			Efficiency	
30	0.9853	1.106	0.4749	
35	0.9773	1.116	0.4726	
40	0.9713	1.124	0.4709	
45	0.9669	1.129	0.4697	

- Evaporator temperature of VCRS using HFC-134a = -53°C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T_Cond=35°C
- Performance of Vapour compression System: Performance of Vapour compression System: COP_VCRS=1.903, EDR= 0.48242 ExergeticEfficiency_VCRS=,0.6747, EDR_Rational =0.3253.

Table-8(b) Effect of absorber temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

1	T_Absorber	COP_vars	EDR_	VARS Second Law
	(°C)		VARS	Efficiency
	30	0.7486	3.417	0.2264
	35	0.7410	3.482	0.2241
	40	0.7353	3.497	0.2224
	45	0.7312	3.522	0.2211

- Evaporator temperature of VCRS using HFC-134a = -53°C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T_Cond=35°C
- Performance of Vapour compression System:Performance of Vapour compression System: COP_VCRS=1.903, EDR= 0.48242ExergeticEfficiency_VCRS=,0.6747, EDR_Rational =0.3253.

Table-8(b) Effect of absorber temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system using entropy generation method

1	— • • •	acr.	-	T11500 1T
	T_Absorber	COP_vars	Rational	VARS Second Law
	(°C)		EDR_vars	Efficiency
	30	0.7486	3.712	0.2122
	35	0.7410	3.759	0.2101
	40	0.7353	3.795	0.2086
	45	0.7312	3.821	0.2074

• Evaporator temperature of VCRS using HFC-134a = -53°C, Compressor efficiency= 0.80

- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T_Cond=35°C
- Performance of Vapour compression System: COP_VCRS=1.903, EDR= 0.48242Exergetic Efficiency_VCRS=, 0.6747, EDR_Rational =0.3253.

Table-8(b) Effect of absorber temperature of VARS on thermal	
performances of single effect vapour absorption refrigeration	
cascaded with vapour compression refrigeration system	

T_Absorber	COP_vars	Maximum	VARS
(°C)		COP_VARS	Second Law
			Efficiency
30	0.7486	1.815	0.4125
35	0.7410	1.815	0.4083
40	0.7353	1.815	0.4051
45	0.7312	1.815	0.4029

Table-8 (a) shows the variation of absorber temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when absorber temperature of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) is decreasing and Exergetic and EDR_Rational is efficiency_Cascade System is increasing decreasing . Similarly exergy destruction ratio based on the exergy of product (EDR Cascade) is also decreasing and exergetic efficiency is increasing as shown in table-8(b) respectively. Table-8 (c) shows the variation of low temperature evaporator circuit temperature with variation of thermal performances such as first law efficiency in terms of coefficient of performance (COP) of cascaded vapour absorption system & second law efficiency in terms of exergetic efficiency and exergy destruction ratio based on exergy of fuel of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234yf refrigerant and it is found that when absorber temperature of single effect Li/Br H₂O vapour absorption is increasing, the thermodynamic performances in terms of (COP_Cascade) & Exergetic efficiency_Cascade System is decreasing and EDR Rational is increasing. Similarly exergy destruction ratio based on the exergy of product (EDR Cascade) is also decreasing and absorber temperature increasing along with exergetic efficiency of cascaded system is increasing as shown in table-8(d) respectively.

The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for absorber temperature at 35°C have been compared and also shown in Tables-7 to Tables-8 respectively and it is found that thermodynamic performances using HFO-1234yf in cascaded vapour absorption system in terms of COP is1.637 % lower and , exergetic efficiency is

3.682 % lower than using HFC-134a at 35°C of vapour compression absorber temperature.

- Evaporator temperature of VCRS using HFO-1234yf = -53 °C, Compressor efficiency= 0.80
- singleeffect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T_Cond=35°C
- Performance of Vapour compression System:Performance of Vapour compression System:
- Performance of Vapour compression System:
- COP_VCRS=1.791, EDR= 0.5751,
- ExergeticEfficiency_VCRS=, 0.6349, EDR_Rational =0.3451.

Table-8(c) Effect of absorber temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

T	Absorber	COP_Cascade	EDR_Cascade	Cascaded System
	(°C)			Second Law
				Efficiency
	30	0.9690	1.187	0.4573
	35	0.9613	1.197	0.4552
	40	0.9554	1.205	0.4536
	45	0.9512	1.210	0.4524

- Evaporator temperature of VCRS using HFO-1234yf = -53 °C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T Cond=35°C
- Performance of Vapour compression System:
- COP_VCRS=1.791, EDR= 0.5751,
- Exergetic Efficiency_VCRS=,0.6349, EDR_Rational =0.3451.

Table-8(d) Effect of absorber temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system

cuseureu nun rupeur compression rejrigerunen system						
T_Absorber	COP_VARS	EDR_vars	VARS Second Law			
(°C)			Efficiency			
30	0.7486	3.417	0.2264			
35	0.7410	3.462	0.2241			
40	0.7353	3.497	0.2224			
45	0.7312	3.522	0.2211			

- Evaporator temperature of VCRS using HFO-1234yf = -53 °C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T_Cond=35°C
- Performance of Vapour compression System:
- COP_VCRS=1.791, EDR= 0.5751,
- Exergetic Efficiency_VCRS=,0.6349, EDR_Rational =0.3451.

Table-8(d) Effect of absorber temperature of VARS on thermal performances of single effect vapour absorption refrigeration cascaded with vapour compression refrigeration system using entropy generation method

enn op y generation method						
T_Absorber	COP_VARS	EDR_vars	VARS Second Law			
(°C)			Efficiency			
30	0.7486	3.712	0.2122			
35	0.7410	3.759	0.2101			
40	0.7353	3.795	0.2086			
45	0.7312	3.821	0.2074			

- Evaporator temperature of VCRS using HFO-1234yf = -53 °C, Compressor efficiency= 0.80
- Single effect Li/Br-H₂O VARS
- Approach=10, T_generator= 110°C. T_EVA_VARS= 05°C, RE=29.167 "kW', T Cond=35°C
- Performance of Vapour compression System:
- COP_VCRS=1.791, EDR= 0.5751,
- Exergetic Efficiency_VCRS=,0.6349, EDR_Rational =0.3451.

Table-8(d) Effect of absorber temperature of VARS on thermal
performances of single effect vapour absorption refrigeration
cascaded with vanour compression refrigeration system

cusculed with vapour compression regrigeration system					
T_Absorber	COP_VARS	Maximum	VARS Second		
(°C)		COP_VARS	Law Efficiency		
30	0.7486	1.815	0.4125		
35	0.7410	1.815	0.4083		
40	0.7353	1.815	0.4051		
45	0.7312	1.815	0.4029		

4. Conclusions and Recommendations

The following conclusions were drawn from present investigations.

- (i) The thermodynamic performances of single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system HFO-1234yf refrigerants(system-2) in terms of COP is 1.435% lower and exergetic efficiency is 3.216%lower than The thermodynamic performances of single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using HFC-134a (system-1) For both type of EDRs 5.922% at 10°C approach and also decreases as temperature overlapping (approach) is increasing.
- (ii) The thermal performance of single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using HFO -1234yf refrigerant is always than the single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system (system-1)using HFC 134a refrigerants. The thermodynamic performances using HFO-1234yf (system-2) in cascaded vapour absorption system in terms of COP is 1.353 % lower and exergetic efficiency is 3.036% lower than using HFC-

134a in the vapour compression refrigeration system.

- (iii) The variation of low temperature evaporator circuit temperature in single effect Li/Br vapour absorption refrigeration system on thermal performance of single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using HFO -1234yf refrigerant when low temperature evaporator circuit temperature of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) is decreasing and Exergeticefficiency_Cascade System is also decreasing and EDR_Rational is increasing . Similarly exergy destruction ratio based on the exergy of product (EDR _{Cascade}) is also decreasing and exergetic efficiency is increasing; The optimum values of single effect vapour absorption refrigeration cycle cascaded with vapour compression cycle for generator temperature of 110°C and condenser temperature and 35°C of absorber temperature using HFC-134a refrigerant (system-1) comes to be 1.353% COP and 3.036% higher exergetic efficiency) with reduction in 5.702% in exergy destruction ratio of cascade system than cascade vapour absorption Li/Br H2O system using R1234yf refrigerant in compression refrigerating cycle (system-2).
- (iv) The variation of temperature of generator in single effect Li/Br vapour absorption refrigeration system on thermal performance of single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using HFO -1234yf refrigerant is 6.0 % to 7% lower than the single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using HFC -134a refrigerants.
- (v) For single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration at -30°C, the performance of HFC-134a refrigerant and HFO-1234ze are nearly similar with the variation of 0.5626% in first law efficiency and 0.559% in second law efficiency while the performance of HFCsuperior than HFO- 1234yf 134a is 3.1196% refrigerant (system-2) . Therefore both HFO refrigerants can replace HFC-134a refrigerant in near future due to its very low global warming potential (i.e. GWP of R1234ze is 6 and GWP of R1234yf is 4 respectively as compared to GWP of HFC-134a is 1360) (iv) Thermodynamic performances of single effect Li/Br-H₂O vapour absorption refrigeration system cascaded with vapour compression refrigeration using HFO-1234yf in cascaded vapour absorption system in terms of COP is 1.643 % lower and exergetic efficiency is 3.201% lower than using HFC-134a. For both type of EDRs 6.261% decreasing as heat exchanger effectiveness is increasing.
- (vi) The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator at -53°C and generator

temperature at 180°C thermodynamic performances using HFO-1234yf in cascaded vapour absorption system in terms of COP is1.643% lower and exergetic efficiency is 3.201 % lower than using HFC-134a in the vapour compression refrigeration cycle.

- (vii) The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator at -53°C and Vapour absorption system evaporator temperature at 5°C have been compared and it is found that thermodynamic performances using HFO-1234yf in cascaded vapour absorption system in terms of COP is 1.643% and exergetic efficiency is 3.201% lower than using HFC-134a.
- (viii) The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for low temperature circuit evaporator at -53°C and generator temperature at 130°C have been compared and it is found that thermodynamic performances using HFO-1234yf in cascaded vapour absorption system in terms of COP, is 1.9563 % lower than using HFC-134a at 30°C of condenser temperature and 1.643% lower than using HFC-134a at 35°C of condenser temperature respectively. Similarly The exergetic efficiency using HFO-1234yf is 3.5033% lower than R134a at 30°C and 3.20% lower than HFC-134a at 35°C respectively.
- (ix) The performance of single effect Li/Br-H₂O vapour absorption system cascaded with vapour compression system using HFC-134a and HFO-1234yf for absorber temperature at 40°C have been compared and it is found that thermodynamic performances using HFO-1234yf in cascaded vapour absorption system in terms of COP is1.637 % lower and , exergetic efficiency is 3.682 % lower than using HFC-134a at 35°C of vapour compression absorber temperature.
- (x) In the single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that absorber temperature of Tripple effect Li/Br vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_{Cascad},) is decreasing and Exergetic efficiency_{Cascade} System is increasing and EDR₁ is decreasing.
- (xi) In the single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when condenser temperature of vapour absorption refrigeration system is increasing, the thermodynamic performances in terms of (COP_Cascad,) and Exergetic efficiency_Cascade System both are decreasing and EDR_Rational is increasing.
- (xii) In the single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when generator temperature of vapour absorption

refrigeration system is increasing , the thermodynamic performances in terms of (COP_Cascad,) is decreasing and Exergetic efficiency_Cascade System is increasing and EDR_Rational is decreasing.

- (xiii) In the single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when Vapour absorption system evaporator temperature (T_{_evaporator})of vapour absorption refrigeration system is increasing , the thermodynamic performances in terms of (COP_{_Cascad},) is decreasing and Exergetic efficiency_{_Cascad} system is increasing and EDR_{_Rational} is decreasing . Similarly exergy destruction ratio based on the exergy of product (EDR_{_Cascad}) is also decreasing and exergetic efficiency is increasing.
- (xiv) In the single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when heat exchanger effectiveness of vapour absorption refrigeration system) is increasing, the thermodynamic performances in terms of (COP_Cascade) & exergetic efficiency_Cascade System) is increasing and EDR_cascade is decreasing when heat exchanger effectiveness is increasing.
- (xv) In the single effect Li/Br-H₂Ovapour absorption refrigeration system cascaded with vapour compression refrigeration using HFC-134a refrigerant and it is found that when temperature overlapping in terms of approach (means condenser temperature of vapour compression refrigeration minus evaporator temperature of vapour absorption refrigeration system) is increasing , the thermodynamic performances in terms of (COP_Cascade, Exergetic efficiency_Cascade System) is decreasing and EDR_Rational is increasing.

References

- H.M. Getu, P.K. Bansal, [2008] "Thermodynamic Analysis of an R744– R717 Cascade Refrigeration System", International Journal of Refrigeration, vol. 31, pp. 45-54,
- [2] A. Kilicarslan [2004] "An Experimental Investigation of a Different Type Vapor Compression Cascade Refrigeration System", Applied Thermal Engineering, vol. 24, pp. 2611–2626.
- [3] Lee T-S, Liu C-H, Chen T-W.[2006] Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO₂/NH₃ cascade refrigeration systems. International Journal of Refrigeration.;Vol-29:No.1,page-100-118.
- [4] A Arora and S.C. Kaushik [2009]Theoretical analysis of LiBr/H₂O absorption refrigeration system, International Journal of Energy Research, 33(15), page-1321 - 1340
- [5] Kaushik, S.C., Arora, A. [2009], Energy and Exergy analysis of single effect and series flow double effect water lithium bromide absorption refrigeration systems, International Journal of Refrigeration, Vol. 32, pp.1247-1258.
- [6] Gomri, R.[2009], Second law comparison of single effect and double effect vapour absorption refrigeration systems, Energy Conversion and Management, Vol. 50, pp.1279-1287).
- [7] Kilic, M. and Kaynakli, O. [2007], Theoretical study on the effect of operating conditions on performance of absorption refrigeration system, Energy Conversion and Management, Vol. 48, pp. 599-607.
- [8] S.B. Riffat N. Shankland [1993] Integration of absorption and vapourcompression systems, Applied Energy, Vol-46, Issue-4,1993,

Pages 303-316.

- [9] Garimella S, Brown AM, Nagavarapu AK. Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling. International Journal of Refrigeration. 2011;34:1776-85
- [10] C Cimsit, I Ozturk. [2012] Analysis of compression-absorption cascade refrigeration cycles, Applied Thermal Engineering, 40, 311-317.
- J Chinnappa, M Crees, SS Murthy, K Srinivasan. [1993] Solar-assisted vapor compression/absorption cascaded air-conditioning systems, Solar Energy, 50(5), 453-458
- [12] Fernández-Seara J, Sieres J, Vázquez M. [2006], Compressionabsorption cascade refrigeration system. Applied Thermal Engineering.Vol-26:page-502-12.
- [13] Rogdakis ED, Antonopoulos KA. Performance of a low- temperature NH3H2O absorption-refrigeration system. Energy. 1992;17:477-84
- [14] R.S. Mishra (2019) Comparison of half effect absorption-compression cascaded refrigeration system using thermodynamic (energy-exergy) analysis. International Journal of Research in Engineering and Innovation Vol-3, Issue-1 (2019), 6-11
- [15] R.S. Mishra (2019) Thermal performances (first law efficiency, exergy destruction ratio & exergetic efficiency) of cascade single effect

ammonia-water (NH_{3} - $H_{2}O$) vapour absorption refrigeration system coupled with vapour compression refrigeration using ecofriendly refrigerants in the low temperature cycle of VCRS system, International Journal of Research in Engineering and Innovation Vol-3, Issue-1, (2019), 1-5

- [16] R.S. Mishra (2018) Comparison of thermal performances of single effect, double effect and triple effect LiBr-H2O absorption system cascaded with vapour compression refrigeration systems using ecofriendly refrigerants, International Journal of Research in Engineering and Innovation Vol-2, Issue-6, 610-621.
- [17] R.S. Mishra Ankit Dewedi [2017] Methods for improving thermal performances of vapour absorption system using heat pipes International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com ISSN (Online): 2456-6934, Vol-1, Issue-3), 118-125
- [18] Ankit Dewedi & R.S. Mishra [(2017)] A thermodynamic analysis of ejector type vapour refrigeration system using eco-friendly refrigerants International journal of research in engineering and innovation (IJREI), vol 1, issue 2, page-40-48.

Cite this article as: R.S. Mishra, Thermodynamic performance evaluation of single effect Li/Br H₂O vapour absorption refrigeration system cascaded with vapour compression system using ecofriendly HFC-134a and HFO-1234yf refrigerants, International Journal of Research in Engineering and Innovation Vol-3, Issue-3 (2019), 165-182.